"Surprising & fantastic results on the maps. I can see you're the place to go if I have some good material!"
- Dave R.

We're not your typical auction house. We work hard to build trust in all that we do. Our consignors keep coming back to us because of our excellent customer service, fast consignor payments, & great results.

Visscher, *Atlas Contractus* (1675)  
Sold for $53,000

Fer, *La Riviere de Missisipi* (1715)  
Sold for $30,500

Stephen F. Austin Land Sales (1825)  
Sold for $18,000

Hunt/Randel, *Map of Texas* (1845)  
Sold for $34,500
PBA GALLERIES

Auctioneers of
Rare Books, Maps & Manuscripts

Seeking Quality Consignments
Maps at auction every two months

Bruce MacMakin        415.989.2665
bruce@pbagalleries.com

605 Addison Street, Berkeley, California 94710
The California Map Society’s 2022 Spring Conference
June 4, 2022

In-person at the David Rumsey Map Center
Green Library, Stanford University
and virtually via Zoom
Register here or scan QR code

Tentative Agenda

10:00 - 10:30am  Doors open at The David Rumsey Map Center, Stanford University
10:30 - 10:45am  Opening Remarks, Ron Gibbs, President CMS & Tom Paper, VP CMS
10:45 - 11:30am  Hampton Sides, In the Kingdom of Ice
11:30 - 12:00pm  Rachel Bolten, Paradise in Panorama
12:00 - 1:30pm   Lunch (in-person attendees may order and pickup lunches at Copa Cafe)
1:30 - 2:00pm    Ron Gibbs, 1777: Decisive Year in the American Revolution
2:00 - 2:30pm    An Interview with David Rumsey
2:30 - 2:45pm    Break
2:45 - 3:15pm    Leo Dillon, Cartography and Foreign Policy
3:15 - 3:45pm    Grant Parker, Reimagining Slavery at the Cape of Good Hope
3:45 - 4:00pm    Closing Remarks, Ron Gibbs & Tom Paper
4:00 - 4:30pm    CMS Business Meeting

A Zoom link will be provided at a later date to registrants. Attendance is free and open to the public for both the in-person and virtual meeting. Please email Tom Paper if you have any questions (tom@websterpacific.com).

See following page for Detailed Bios and Talk Descriptions
Detailed Bios and Talk Descriptions

Hampton Sides: In the Kingdom of Ice: The Grand and Terrible Polar Voyage of the USS Jeannette
Historian Hampton Sides will speak about the voyage of the USS Jeannette, one of the most harrowing adventures of all time and the subject of his New York Times bestselling book, In the Kingdom of Ice. All but forgotten today, the Jeannette expedition was America’s first official attempt on the North Pole (1879-1882), undertaken by the U.S. Navy. This tale of a Gilded Age expedition gone very, very wrong, is many things: An examination of the human will to survive, a portrait of a young nation pushing its way onto the world stage, an evocation of the power and strangeness of the natural world, and a compelling look at the pseudo-scientific theories spread by supposed “experts” like the infamous German cartographer August Petermann that sent many explorers to their early deaths. Above all, this little-known expedition from the Heroic Age of Exploration is a spellbinding and suspenseful journey—not only into the Arctic but into the very nature of man. Hampton Sides is an historian, an editor-at-large at Outside Magazine and a contributor to numerous newspapers and magazines. He has published numerous books and is now at work on a book about the third and final voyage of Captain James Cook. http://www.hamptonsides.com

Rachel Bolten: Paradise in Panorama
Rachel Bolten’s talk will trace the lives and afterlives of the panorama in California, a form at its peak in the mid-1800s, but which survives well into the twentieth century. Ms Bolten began her research by looking closely at the 1878 Muybridge Panorama of San Francisco; after the 1906 earthquake and fire in that city photograph and lithograph panoramas were again made in large numbers, both as geologic record and morbid souvenirs of the ruin. She finds echoes of the panorama during the Depression, another moment of socioeconomic and environmental collapse: in the novels The Day of the Locust, Ask the Dust, and Mildred Pierce, in the disaster musical, San Francisco, and in the culture of the 1939 Golden Gate International Exposition on Treasure Island. Rachel Heise Bolten is a lecturer in the Program in American Studies at Stanford University. https://profiles.stanford.edu/rachel-bolten

Ronald S. Gibbs: 1777: Decisive Year in the American Revolution
At our Spring 2018 Meeting, Ron Gibbs presented “On the Brink of Disaster: George Washington and The American Revolution, 1775-1776.” In this new lecture, CMS President Gibbs will jump back with us to the momentous story of the Campaign of 1777 and show why, with historic maps and images, it proved to be the Decisive Year of the American Revolution.” Ronald S. Gibbs, MD, President of the California Map Society, has lectured and written frequently on American history and cartography. He is Clinical Professor of Obstetrics and Gynecology and Knowles Distinguished Scholar at Stanford University. https://ronaldsgibbs.com

An Interview with David Rumsey
David Rumsey will be interviewed by Tom Paper, Vice President of the California Map Society. Tom will talk with David about his early years and college, his first work experiences involving art and technology, his transition to real estate development and his current activities with the David Rumsey Center, Luna Imaging and Cartography Associates. David Rumsey is President of Cartography Associates, a digital publishing company based in San Francisco, and is Chairman of Luna Imaging, a provider of enterprise software for online image collections. https://www.davidrumsey.com/about/david-rumsey

Leo Dillon, Cartography and Foreign Policy
Maps are an important tool for crafting foreign policy, and in return foreign policy is an important influence on elements of maps. The presenter will draw from his 34 years of experience as a cartographer and geographer at the U.S. State Department to describe the intersection of map making and foreign policy, and to give examples on how boundaries, depictions of territorial sovereignty, and geographic names shape the maps we use in ways we often take for granted. Leo Dillon is recently retired, formerly with the Office of the Geographer and Global Issues, U.S. Department of State. State Magazine, Wired Magazine.

Grant Parker, Reimagining Slavery at the Cape of Good Hope
This lecture will canvas historical maps as sources of insight into lives, both enslaved and slave-holding, at the Cape in the early colonial period. Grant will consider how selected maps tacitly embed narratives on both a large and a small scale and how they reflect both continuity and change. The lecture will draw on Stanford University’s map collections. Grant Parker is an Associate Professor of the Department of Classics at Stanford University and a Faculty Affiliate of the Center for African Studies. https://profiles.stanford.edu/grant-parker
My love affair with maps grew from my boyhood interest in early American history. Growing up in Philadelphia, I often visited shrines of the great American story—Independence Hall, The Liberty Bell, Brandywine Battlefield, and Washington’s Crossing. My wife, Jane, started our family collection of 18th-Century maps by giving me two Revolutionary War battle maps for my birthday, nearly 40 years ago. Like many members of the California Map Society, my interest goes beyond collecting; it sometimes seems more like an affliction or an obsession. It is even difficult to describe the thrill of finding a map, examining it in detail, and then giving it a new home. I have often taken a personal interest in our maps, wondering about previous places they have been in their 200-300 years since publication. In every step, Jane has been an enthusiastic partner. When I have not been certain as to whether we should acquire a special map, I always asked her, and her answer was usually, “Yes, get it.”

I also confess to the joy of seeing other maps, in colleagues’ collections or in great libraries and museums throughout the United States and in Europe. Altogether exploring maps brings enhanced understanding to history, current events, discovery, and the science of exploration. In 2021, with CMS Vice Presidents Tom Paper and Courtney Spikes, we were able to demonstrate these insights in two journal articles.2,3 And during the two years of the COVID-19 pandemic, we have seen how modern maps are used to show the virus’s status to the American public. Maps are used, for example, to show case rates, fatality rates, and vaccination rates.

Yet another confession is the great friendships one makes in the world of maps. Here in the California Map Society, we have a dedicated membership who come from diverse personal and professional backgrounds. During the COVID-19 pandemic, CMS officers and committee members have responded by providing a robust series of meetings, mostly virtual but one even as a hybrid last summer. Our journal, Calafia, edited by Juliet Rothman and published by Fred DeJarlais, has achieved wide recognition internationally. One recent innovation has been providing a theme for an issue, with Native American maps being highlighted in this spring issue. Then, with the advent of virtual meetings of other map societies in North America, there is an excellent opportunity to meet other cartophiles virtually across the nation. When we lived in Denver, Jane and I also made great friends in the Rocky Mountain Map Society.

Finally, as a physician, I’d like to add a note about the prognosis for those afflicted with cartophilia. There is no known cure, but it is compatible with a long and happy life!

So, my confession about being a cartophile is broad and long-running. I look forward to greeting others so afflicted virtually at the spring virtual meeting on Saturday, June 4, 2022 and to face to face greetings at future meetings. I wish all good health and safety.

Best wishes,
Ronald S. Gibbs, MD

Endnotes
1 https://www.urbandictionary.com
2 Gibbs R, Spikes C, Paper T. “Terrain and Tactics, British War Plan of 1776,” published on-line in Journal of the American Revolution on October 12, 2021. To read the article, click this link:
   https://allthingsliberty.com/.../terrain-and-tactics/...
   https://drive.google.com/.../1mWqO1p5yGaDkJqrQQcK.../view...
The California Map Society Education Fund was established in 2014 by the Society to sponsor an annual lecture by a noted author or other expert in the field of cartography. Lectures are held at the David Rumsey Map Center at Stanford University, which co-sponsors the program. Also, soon after the lecture is held at one or more venues in Southern California. The Fund provides transportation, accommodations, and an honorarium for the speaker. In addition, in a new initiative originated by the Rumsey Center staff, the Fund will co-sponsor with the Center an annual Guest Curatorial Program. As part of our contribution to cartographic education, our regional conferences also often include student presentations, supported by prizes for the presenters generated from CMS general funds.

The Education Fund has been successful in achieving its financial goals for our first five-year term. The Board of Directors has authorized an extension of the program for another five-year term. Several major donors have helped us begin the process of funding the second five-year term of the program. We encourage other past contributors to extend their generosity and help us to continue this worthy program. We hope that members who have yet to contribute to the Fund will make a financial commitment to the program.

Silver
Warren Heckrotte
Steve Hicks
Glen McLaughlin

Bronze
Juan Ceva
William Eaton
Anthony Farndale
Ron Gibbs
Robert Graham
Philip Hoehn
Wally Jansen
Barbara Keck

The list above includes cash contributions made under both contracts with the Rumsey Map Center. Please consider adding your name to this very special list.

A Full Calendar of Meetings and Events Worldwide is available on John Docktor’s website at: www.docktor.com

CMS EDUCATION FUND

Scollon, who shares his hands-on experiences as he organized and led many of these groups. Mark Warhus, author of Another America: Native American Maps and the History of our Land, will be continuing our theme in the fall edition with an article on Native American mapping.

Special articles in this issue move us through history. We are introduced to the early 16th century with Christopher Tyler’s Rosselli map, the first world map with meridian lines, and move on to Richard’s Pflederer and Jose Luis Gonzalo’s tracking of a very rare Battista Agnese atlas’ complex history. Carol Spack shares maps of Boston in the third of her article series, as we search for what’s “Hiding in Plain Sight,” and Leonard Rothman explores three very different kinds of globes used in teaching geography from colonial times to the present day. Stuart Ackland takes us on a drinking tour of Oxford’s 319 pubs, breweries, and beer houses with an 1883 map, whose purpose, when it is revealed toward the end of the article, is sure to draw a smile—or even a laugh!

We meet our member, Bill Brandenberg, and learn about Richard Breiman’s favorite map, Blaeu’s Americae Nova Tabula. Andria Olson of the Geography Division of Green Library at Stanford shares a very special app for maps, and we see what BAM and GLAM have been up to with Tom Paper and Therese Melbar. With fellow map members Bill and Macy Brandenburg, Tom Paper and Eleanor Bigelow, and Leonard and I attended the IMCOS meeting in Brussels. I asked one of the leaders of the Brussels Map Circle to share her insights into the history and development of their circle, to give us some idea of another circle’s organization, interests, and activities. We also had the opportunity to visit various museums, collections, and archives in Brussels, and I share some of the highlights of these. Enjoy this issue, and, as always, we especially welcome articles by members and readers, and hope you will consider contributing to a future edition.
The second presenter was Professor Andrew Frank, Florida State University.

Dr. Frank is an ethnohistorian who specializes in the history of the Florida Seminoles and the Native South. He is the author of Before the Pioneers: Indians, Settlers, Slaves, and the Founding of Miami (University Press of Florida, 2017). The intent of his talk was to decolonize the history of Florida to connect the modern Seminole and Miccosukee Indians with their diverse ancestors who lived in the territory in the fifteenth century. He contends that outsiders have long justified the dispossession of Indian lands by denying Seminole kinship with their Calusa, Tequesta, and Ais ancestors and their lands. He supports the Seminole’s oral testimony with a closer look at maps (Fig. 3, 4; Fig. 5, next page), archaeological and historical evidence. The title of his talk was Indigenous Floridians in the Time Before Memory.
The final presenter was **Sean Conway**, Orthoimagery Technical Expert. Mr. Conway uses his formidable technological skills to transform vintage maps into stunning, three-dimensional relief maps by meticulously rendering elevation data (Fig. 6). In addition to the images shown here you can also view more of his work at Muir Way (www.muir-way.com/collections/vintage-relief).

**Figure 5.** Screenshot from Professor Frank’s talk.

**Figure 6.** Screenshot from Mr. Conway’s presentation, illustrating Eduard Imhof’s historic techniques within modern mapping technology.

**Figure 7.** Screenshot from Mr. Conway’s presentation. Island of Guam (work in progress)

**Figure 8.** Detail from Fig. 7

---

**CARTO-QUIZ**

**Name the disoriented US states!**

---

**Page 7** **CALAFIA JOURNAL** **Volume 2022, issue 1**
Although Francesco di Lorenzo Rosselli was a well-known cartographer in (very) early 16th century Florence, he does not seem to be recognized as the truly gifted innovator he actually was. He is principally recognized for drawing the first printed map to show the New World, in about 1506, but this was really only a small cartographic advance, as hand-drawn world maps had been showing the New World for several years, beginning with Juan de la Cosa in 1500, and by the printed versions of Martin Waldseemüller's first world map of 1505. Rosselli was, however, the author of at least four world maps, each in a different cartographic projection, of numerous local maps of Central Europe, the Balkans, Italy, Hungary, and Palestine, and of town plans of Rome, Florence, Pisa, and Constantinople. He has also been recognized (Brockhaus, 1911) as the painter of a compelling bird's-eye view of his hometown of Florence (Fig. 1), viewed from a hillside at lower right by an evocative sketching artist.

Rosselli was born in Florence in about 1447 and first worked in Siena as a miniaturist. By 1470, he had returned to Florence and established a workshop for the woodcutting and engraving of maps and various pictorial modalities in his house at the Costa San Giorgio, just inside the city walls in the foreground of the further bank of the river in Figure 1. He later expanded these premises by adding a bookstore and becoming the first bookseller in history to sell his own local and world maps, as well as those of others. His first maps were of the classic Ptolemaic projection and showed the known world in a Mid-East-centered quadrant of the northern hemisphere. He utilized the ‘apron’ format, widely promulgated in the mid-1400s, as translations of the second-century Roman text of Ptolemy’s classic Geographia became available.

Ptolemy was remarkable in Roman times, not only appreciating that the Earth was a globe but for proposing no less than six different projections of the curvature of the Earthly globe to the flat surface of the page (Fig. 2). These were the cylindrical (‘Mercator’) projection, the ‘Ptolemaic’ conical projection, the ‘stereographic’ projection to a tangent plane,
gational charts. These lines are of particular value for marine navigation, such they are arranged so that many of them are located on land rather than in the oceans.

It is important to note that this projection is an accurate precursor of the well-known Mercator projection, formalized by Gerhard Mercator in 1569, about six decades later. One might propose that Mercator’s projection be renamed the "Rosselli-Mercator" projection, in view of Rosselli’s precedence!

As noted above, Rosselli’s best-known world map is his oval planisphere (Fig. 5), complete with a dozen wind-heads in the clouds around the perimeter, notable in several important respects. One is the shading and the ‘Secant’ versions of each. However, the Renaissance cartographer had to reconstruct the actual geographic configurations from Ptolemy’s textual descriptions, a complex and challenging task.

As one of the most remarkable proponents of this effort, Rosselli collaborated with Giovanni Contarini to generate the first complete projection of the northern hemisphere in the Ptolemaic conical format, dated 1506 (Fig. 3; see Fig. 2), though still geographically incomplete.

Rosselli’s best-known map is the oval planisphere, usually dated to ~1508 (Almagià, 1951). However, before analyzing this map, it is important to note the recent realization of a second world map on the reverse of the same sheet, in a completely different format, known as his Universal Marine Map. This was actually the first complete cylindrical projection in history (see Fig. 2, top row) and is depicted with partial self-repeats on either side to illustrate how the map wraps into a cylinder. (Fig. 4) This projection’s unique strength is that distances along a constant heading project as straight lines on the map. These are drawn through the ring of 16 compass roses around the lines center, as in portolan navi-
around the continents, which gives them a unique, three-dimensional appearance. Another is that it is the first world map projected in oval format, representing a novel solution to the problem of projecting a spherical globe onto a flat plan. While the central region approximates a conventional projection of one side of the spherical globe (white dashed circle), the expansion of the invisible far side into elliptical wings was Rosselli’s own novel concept. It was not formally developed into the accurate elliptical projection until Mollweide (1805), but Rosselli clearly anticipates this concept centuries earlier (Heawood, 1923), as can be seen from the yellow elliptical curves overlaid here on his projection (Fig. 5).

It should be appreciated, moreover, that it is very challenging to construct a set of nested geometrical ellipses in this form since the only feasible method is to use two pins and a loose loop of string (held taut by the stylus point). There is no known procedure that provides for equal spacing of the intersections of the different-sized ellipses with the equator, which is evidently the backbone of this projection. The easier approach, utilizing a ‘racetrack’ oval, was not introduced until 1520 by Pietro Cippo. It would seem that Rosselli must have derived his quasi-elliptical meridian curves visually. In view of its originality at this early date, therefore, this projection deserves recognition as the ‘Rosselli-Mollweide elliptical projection’.

In terms of their geography, it is evident that both of Rosselli’s conjoint projections (Figs 4 and 5) are based on similar information, with the 15th-century Ptolemaic truncation of India and enlarged Sri Lanka and an incomplete South America separated from the vestigial Maritime provinces in the north, which are attached to an extended Asian landmass. The traditional dating of 1508 may be suspect, as these maps both lack the notable extension of South America north into a part of Central America, as featured in Waldseemüller’s grand planisphere of 1507. As a purveyor of maps from his bookstore in Florence, Rosselli should certainly have been familiar with this distinctive feature. Thus, the inclusion of the Caribbean islands from Columbus’ voyages of the 1490s, but not the Central American spur, supports an earlier dating of this conjoint pair of maps from Waldseemüller 1503-4.

In summary, it seems clear that Francesco Rosselli should receive greater recognition as the first cartographer to employ the three known major projections of the globe—the conical, the cylindrical, and the elliptical, and moreover to do so in complete form. This is noted by his inclusion in the table of about 80 different projections listed on the Wikipedia page: https://en.wikipedia.org/wiki/List_of_map_projections.

Although only his cartographic contributions have been included here, Rosselli should also be recognized for his extensive skills as a manuscript illuminator, a groundbreaking bookseller at the dawn of printed books, an innovative painter of urban scenes, and a popular engraver of powerful images of prophets and sybils that may well have inspired those in Michelangelo’s design of the Sistine Chapel. This broad variety of accomplishments makes Francesco Rosselli a true Renaissance man.

References

Endnotes
1 Leonardo da Vinci drew a diagram of an oval projection of the globe around this period, as discussed in relation to the Rosselli planispheres by Tyler (2021, in press). Given Rosselli’s availability in his bookstore in Florence and da Vinci’s longstanding interest in cartography, it seems inevitable that they would have met, and likely that Rosselli would have been a key source of da Vinci’s extensive knowledge of cartographic projections. The dating of Rosselli’s conjoint pair of world maps in Figs. 4 & 5 needs to be coordinated with other significant cartographic events of the period. Vespucci’s inaugural description of the South American coastline was published in Florence in 1503, and news of the true triangular shape of India based on Vasco da Gama’s second voyage would have reached Rosselli in Florence by ~1504, as represented in the forms of India in the Cantino, Cavour and Kunstmann II world maps. Since Rosselli’s pair of maps show the coast of South America, but still have the old Ptolemaic form of a truncated India, these timings imply a dating to ~1503-4, rather than the usually accepted date of 1508.
2 The dating of Rosselli’s conjoint pair of world maps in Figs. 4 & 5 needs to be coordinated with other significant cartographic events of the period. Vespucci’s inaugural description of the South American coastline was published in Florence in 1503, and news of the true triangular shape of India based on Vasco da Gama’s second voyage would have reached Rosselli in Florence by ~1504, as represented in the forms of India in the Cantino, Cavour and Kunstmann II world maps. Since Rosselli’s pair of maps show the coast of South America, but still have the old Ptolemaic form of a truncated India, these timings imply a dating to ~1503-4, rather than the usually accepted date of 1508.

A frequent contributor, Dr. Tyler’s articles have also appeared in the Fall 2019, Spring 2021, and the Fall 2021 issues of *Calafia*. 

---

**Volume 2022, Issue 1**

**Calafia Journal**

**Page 10**
In some cases, the history of a precious manuscript during the centuries after its production—its changes in ownership, its movement around the world, et cetera—might be more interesting than the actual content of the piece. This may well be true for a rare and valuable atlas, drawn by Battista Agnese, which was recently donated to the National Library of Spain. The manuscript in question is a previously unrecorded atlas authored by Battista Agnese, and its story is an interesting one. Let’s start with its latest, and we hope final chapter.

In the final months of 2020, a unit of the Spanish police, the Brigada de Patrimonio Histórico, received a tip that a manuscript portolan atlas, drawn by Battista Agnese, which had been sold at auction shortly before, might possibly be departing the country. Suspecting that the owner of the atlas may have taken it out of Spain without requesting the required authorization from the Ministry of Culture or that he intended to do so, the Spanish police contacted the owner. After arduous police inquiries and on-site analysis of the manuscript by staff from the National Library of Spain (BNE) and Professor José Luis Gonzalo (one of the authors of this article) in December 2020, it was determined that the atlas was authentic and that it had indeed been sent out of the country, specifically for cleaning and minor restoration. Complex negotiations began with the owner, and concluded in a fruitful and satisfactory manner for both parties. In July 2021, a press release of BNE announced the definitive transfer of this unrecorded Agnese atlas to the Spanish state and is now part of the library’s collection of cartographic manuscripts. Before getting into the history of this atlas preceding its donation to the BNE, it might be worthwhile to understand something about its author and its production.

Battista Agnese was born in Genoa sometime in the late 15th century, but early on, he moved to Venice, where he apparently did his work. While he was best known for producing atlases, his earliest surviving work is an individual chart, drawn on a full sheepskin, which was signed and dated in 1514, and is typical of the sea chart tradition known as “portolan charts,” which began in the late 13th and continued well into the 18th century. For a period of twenty years after the production of this chart, there are no known works by Agnese, but, beginning in 1536 and continuing for thirty years, we see a steady production of manuscript atlases of sea charts, each one containing between six and thirty charts. The cartography and stylistic characteristics of these atlases were consistent with the larger individual charts, but these atlases were not intended for navigation aboard ship. Rather, they were extremely fine, luxurious works of art intended for the libraries of important personages, such as Bishops, Cardinals, Abbots, Dukes, and even Kings. Among the recipients of these atlases were two kings, Henry VIII of England and Carlos I of Spain, who also held the title Carlos V, Holy Roman Emperor.

The atlas, which is the subject of this article, contains an elaborate coat of arms (Fig. 2, next page) drawn on a full page. It has been identified as that of Prince Philip of Spain, son of Carlos V, who would succeed his father as Philip II, King of Spain, in 1555 and would assume the crown of Portugal in 1580.

Once the original owner had been identified, it was possible to trace the provenance of the gift, as recorded in the accounts of the imperial heir’s Libro de Cámara. Two documents elaborate on both how and when the atlas came to be in Spain. The first confirms that the atlas was a gift from Diego Hurtado de Mendoza, Carlos V’s ambassador to Venice, to Prince Philip around the year 1546, when Philip was nineteen years old. This document is a payment order made in 1547, to one Rodrigo Espinosa, a carpenter, “for a box for an atlas sent from Venice to his highness by Don Diego de Mendoza.” The second is another payment order from the prince’s office, this one to the noted painter and illuminator Diego de Arroyo, also in 1547, for painting “two royal coats-of-arms of
his highness illuminated in gold, one in the atlas that Don Diego de Mendoza sent from Venice, the other on a separate parchment”.  
As mentioned above, Philip’s father, Carlos V, had ordered an atlas from Battista Agnese. A catalogue published by the John Carter Brown Library notes that, “… this atlas was made at the order of Charles V, the Holy Roman emperor, to give to his son Philip, sixteen years old in 1543...”.  
It has been suggested that the extensive illuminations decorating the folios of the atlas were the work of the Croatian-born miniaturist Giulio Clovio (1498-1578), who worked mostly in Italy, and who was also the creator of twelve miniatures celebrating the military victories of Carlos.  

Figure 2. The coat-of-arms of Philip, which was painted after the atlas arrived in Spain.

Figure 3. Carlos and Philip from contemporary portraits.

On the first leaf of this atlas, under the inscription "Philippo Caroli Aug. F. Optimo prin. Providentia", were painted a medallion with the portrait of the emperor, an imperial coat of arms, and a scene with the young prince Philip receiving the globe, as a symbol of his future role in world government. Given the elaborate classical decorations, the 1543 atlas is considered by many to be the most beautiful example of Agnese’s entire body of work.

So, it would seem a bit curious that just four years later, Carlos V’s ambassador to Venice, Don Diego Hurtado, would have gifted Philip another atlas by the same author, especially since the 1546 atlas—although beautifully drawn and perfectly functional—was unremarkable in comparison to the 1543 atlas. Don Diego had been in Venice as Carlos V’s ambassador since 1539, and it would be unlikely that he would have been unaware of the earlier transaction with Agnese.

Although Battista Agnese was the most prolific sixteenth-century author of portolan charts, very little documentary information about him survives. Thus, scholars have had to piece his story together from information gleaned from his surviving works. The most comprehensive study of Agnese’s work was conducted by Henry R. Wagner, who published a major study in 1931 that listed 68 atlases he had located in 46 different libraries. He followed this up in 1947 with a short article in Imago Mundi, which listed three more atlases. Wagner’s listings described every folio of each atlas, over 900 folios in all. Agnese had signed and dated only about 25% of his atlases. However, from his study of cartographic changes and additions in the individual folios of each atlas, Wagner had created a system of categorizing the atlases, which allowed him to deduce an approximate chronology of the unsigned items in Agnese’s body of work.

In the years since 1947, more atlases have come to the attention of scholars. Richard Pflederer, one of the authors of this article, maintains a census of all known portolan charts and atlases. In addition to the 71 atlases Wagner had identified, he has added another 20 atlases, bringing the total to 91. With the nine individual charts signed or attributed to Agnese, his body of work includes exactly 100 items, containing a total of 904 charts.

Let us conclude by discussing what we know of the whereabouts of this atlas in the years between its arrival in
Spain as a gift for young Philip until the recent events with which we began this article. After it was received in Castile by Prince Philip, the Agnese atlas was placed in the royal library, where it remained for many years. It is listed in a 1574 inventory of the books kept in the Royal Alcazar in Madrid as follows:

"Illuminated sea chart (sic) written on parchment in quarto"  

While there is no mention of the box which was made for it in 1547, it is worth noting that the content, substrate, and decorative technique coincide with the present atlas.

The atlas remained in the royal collections until the death of Philip II in 1598. The inventory of the monarch cites it as:

"a book in quarto that has 15 folio and inside it a sheet of painted paper, and in the pages, of the said book, a sea chart, bound with tables and gilded leather, with four hands (S.L.)"  

The reference to ‘four hands’ is particularly telling. Several of the Agnese atlases which have survived in their original bindings have tiny brass clasps in the form of human hands, measuring about 6 mm across the palms, installed in the covers of the binding to keep the book closed when not in use. This is one more confirmation that the Prince Philip atlas originated in the Venetian workshop of Battista Agnese.

The initials ("S.L.") indicate that this book had been reserved for the library of San Lorenzo de El Escorial, but we have no evidence that it was actually sent to that library. Its present binding, which was applied much later, lacks the typical monastic cover of the El Escorial books, and its flyleaves contain no topographical signature that would reveal its stay in this library.

The present binding, however, provides us with some clues as to its journey after the death of Phillip II. A consultation with Professor Antonio Carpallo Bautista of the Universidad Complutense de Madrid confirmed that the binder of this atlas was Gabriel Gómez Martín (1751-1818). Other books bound by Martín have covers and endpapers practically identical to those of this Agnese volume. Notably, one book bound by Gómez for King Charles IV has covers identical to Prince Philip’s Agnese atlas. These similarities allow us to place this book in Madrid, in the Royal Palace itself or very close to the Court, around the end of the 18th century, that is, before the War of Independence against the French (1808-1814).

The whereabouts of the atlas for the two hundred years between its re-binding in Madrid and its recent confiscation by the Spanish authorities remains unknown. However, from our point of view, the story has a happy ending, with the atlas safely installed in its newfound home in the National Library of Spain.

Images of the atlas can be viewed online at:  
(http://bdh.bne.es/bnesearch/detalle/bdh0000258583).

**Figure 5.** Although not in the style of a portolan chart, this world map was included in the newly identified Agnese atlas. It depicts the track of the Magellan/Elnaco circumnavigation of 1519-1522.

**Endnotes**

1 José Luis Gonzalo Sánchez-Molero, Felipe II. La educación de un "felícísimo príncipe" (1527-1545); Madrid: Ediciones Polifemo y CSIC, 2013, pp. 743-745.  
3 Richard Pflederer, *Census of Portolan Charts and Atlases, March 2021 edition*, EXCEL database available from the author via email: richard@pflederer.net  
4 *Catálogo de los libros de Sv Mag.,* Real Biblioteca del Monasterio de El Escorial, &II-15, fol. 309v.  
5 Guillermo Antolín y Pajares, "La librería de Felipe II (Datos para su reconstrucción)", *La Ciudad de Dios*, CXVIII (1919), p. 131.

**The Authors**

José Luis Gonzalo Sánchez-Molero (Madrid, 1969). Professor at the Complutense University of Madrid (Spain) and Dean of the Faculty of Documentation Sciences at the same university. He is the author of several monographs and articles on the history of books and libraries in medieval and Renaissance Spain, as well as on the education of Philip II.

Richard Pflederer, independent scholar, author of *Finding their Way at Sea*, and nine reference books on portolan charts and atlases, and numerous articles on the same subject. He is a member of the Washington Map Society, The Society of the History of Discoveries and the founder of the Williamsburg (Virginia) Map Circle. He also serves as Advisor to the MEDEA-chart project based in Lisbon.
The Greater Los Angeles Mappers held the Annual Holiday Coffee and Cocoa Gathering virtually on Saturday, December third. Maps, ephemera, books, and websites of interest were shared by CMS members. President Ron Gibbs gave opening remarks and thanked those who had worked on bringing this event to our members. He also extended greetings to all for various holidays and celebrations our members will be enjoying, as we look forward to a happier, healthier, and productive 2022! Tom Paper, Northern Vice President, proposed the possibility for map photo-shoot events using a high-resolution camera. These maps can then be included in the digital gallery. This will be an opportunity for members to have a digital copy of their maps available for sharing. Members who had donated to the CMS Educational Fund this past year were also thanked for their generous contributions. Donations support the student paper competition and lecturers, which is also co-sponsored by the David Rumsey Map Center.

On theme with our coffee and cocoa event, member Louise Ratliff raised a glass Nestle mug depicting a frosted globe. (Fig. 1) This was something she discovered on a collectibles trip with her husband several years back. Nice find!

Fred DeJarlais, Calafia publisher, CMS VP for Membership, and historian for his family gave a presentation on his early family ancestry in Hennepin County, Minnesota. (Fig. 2) The talk was based upon genealogy research on the family’s migration from Quebec to the Minnesota Territory in search of prime farmland in the 1850s. Early historical maps and aerial views of these areas were presented within several time periods. This research was a continuation of a previous CMS presentation. His resources were derived from the John R. Borchert Map Library at the University of Minnesota http://geo.lib.umn.edu/aerial_photos/hennepin.pdf and historical atlases from the Hennepin County GIS Department and their Aerial Imagery Viewer https://gis.hennepin.us/property/map/default.aspx for views of township maps from the 1940s through 2020. The maps depicted increasing suburban development with an overlay depicting two family farm parcels. The Aerial Imagery Viewer permits easy use of map scaling for custom views. By using an aerial orthophoto, the view has been corrected to remove distortions of the image and adjusted for uniform scale, so it can be used to measure accurate distances. Fred had visited the area in the 1950s and used his memories as a reference to what he had seen then versus what was displayed on the aerial maps. He will continue his research and will be sharing his findings with members of his family and CMS.

Peter Hiller is one of our longtime members of CMA and has a primary interest in cartographer Jo Mora. He showed us a miniature biography book he owns about Jo Mora. Peter also reviewed his favorite AAA map (Fig. 3). He recently returned from a trip from Carmel, California, to Santa Fe and Albuquerque, always traveling with a collection of AAA Maps from the Automobile Club of Southern California. His favorite is the Indian Country Map of Arizona, Colorado, New Mexico, and Utah. Following his trips, he highlights the routes he covered. The map list points of interest and places to stop, including historical information. He has cov-
covered most routes in the southwest over the years and currently searches for the remaining routes he has not already taken in his travels.

**Emily Yang**, a previous CMS presenter, showcased a delightful miniature diorama (Fig. 4) of a well-accredited map library. So adorable! The library was a Sam’s Study DG102 kit she purchased online [https://robotime-usa.com/3D-Wooden-Puzzle-Rolife](https://robotime-usa.com/3D-Wooden-Puzzle-Rolife), which she has customized to express her love of maps and books. One example was a wing chair that was upholstered with fabric spotlighting New Zealand for the chair back as this area of the world is often not represented in modern artistic maps. Emily has miniaturized several of her favorite maps, including a German map of the arctic region with an area marked “unknown.” Her library has several miniature globes and map wallpaper. She also presented a miniature bookshelf full of books she has miniaturized of some of her favorite full-sized versions.

Members at our Holiday Cocoa meeting were given a very interesting presentation by CMS member **Ginger Eichhorn**. Ginger is a regular attendee at the monthly Greater Los Angeles Area Mappers GLAM Gals virtual map sharing meetings. She has a special interest in shipwreck maps. Today, however, she reviewed the Tribal Connections map of the United States, by the U.S. Forrest Service, Federal and Indian Lands, and Land Cessions Viewer, [https://www.arcgis.com/apps/webappviewer/index.html?appid=fc311f69cb1d43558227d73bc34f3a32](https://www.arcgis.com/apps/webappviewer/index.html?appid=fc311f69cb1d43558227d73bc34f3a32). New Mexico was highlighted as one example of dozens of digitized areas of tribal treaties that are represented on this map of the United States. Embedded in this map are links to important documents about land treaties. This includes historical items such as Executive Orders, Library of Congress papers, and Charles C. Royce maps. Documents from the National Archives and other pertinent documents about land that is impacted by treaties are brought together in a simple to use format for conducting research. Map links connect various events that lead back to the 1800s.

During a break, member **Fred Auda** showed us a very colorful 1960 cartographic land map of the Navajo Nation. (Fig. 6) He then showed us a World War II map which was part of his father’s effects titled Roll on 110th. The map portrayed the siege of Bastogne in Belgium. The map held an association for another meeting attendee whose father-in-law was also a member of the 110th. We may learn more about this in a future gathering after Fred has some time to pursue this aspect of his father’s military career.

**Tim Weiskel** shared with us emerging digital technology being used as a teaching aid with the Africa Map Circle,
The first print reviewed was a high-resolution graphic image of Cape Coast Castle, which was involved in the slave trade on the coast West Africa. (Fig. 7) By digitizing these images, one can examine documents in finer detail. One aspect of the slave trade was the large volume of food needed to feed the millions of people who were transported over thousands of miles for hundreds of years. These diagrams of areas surrounding forts and castles give us some clues to the extent of plantations and agriculture production in the area. Food supplies were a necessary element to support the slave trade and transatlantic travel. Through The Africa Map Circle, an online map group, rare maps can be seen through links on the website to library collections that are generally not available for public viewing. Afriterra, https://www.afriterra.org, a cartographic free library, is a collection of maps on early Africa from a private library. They have been digitized and made available for online public use. Tim also showed us the very detailed map printed in 1753 by Postelthwayt showing numerous castles along the coast of Africa involved in the slave trade: https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8-1~317063~90085879:Vol-I-A-new-and-correct-map-of-th . Digitization of this map permits the annotations to be clearly read and fine details seen on the inset map of the Gold Coast listing many forts and castles. Finally, we saw a French map of the many castles in the area and drawings with short vignettes about each.

Leonard Rothman, CMS Past President, gave us a quick survey of some antique globes in his collection. This included a rare fourth-dimensional war globe that was included in a recent Calafia article. Leonard’s current interest, however, is collecting three-dimensional maps. One stunning example was a ceramic map of Japan in blue (Fig. 8) with ocean waves and districts delineated for the country. This was one of two he currently owns. Once more common, three-dimensional maps are still very useful today and provide a better spatial understanding of the world. Leonard intends to gain a photographic memory of the geographical presentation of the entire world! Today, Leonard showed us a map of Europe with mountainous areas in yellows and the flatlands, such as Ukraine and Russia, in greens. Here, the Ural Mountains are quite prominent as their coloration, and raised surface can be spotted as a vertical line in the upper right portion of this map. Leonard has collected maps throughout his travels and has accumulated a terrific collection of maps, globes, and other ephemera. He has enjoyed seeing places in person of the maps in his collection.


Figure 7. A New and Correct Map of the Coast of Africa

Figure 8. Ceramic three-dimensional map of Japan.
On August 18, 2021, we had a BAM meeting organized and hosted by Mike Schembri and Tom Paper. The meeting was a hybrid meeting, with about 15 people attending in person at Tom Paper’s home and about 40 people online.

- Tom Paper shared his new map book library in his basement; his presentation was titled “The Metamorphosis of My Man Cave.” [A]
- Ron Gibbs shared The Greatest American Disaster Map: The Faden Fort Washington map of 1777. [B]
- Rich Breiman shared Maps of Inner Space, which were drawings of the human body by Bernhard Siegfried Albinus. [C]
- Fred DeJarlais shared an application called River Runner, which took viewers on a virtual eagle-eye view of running the length of a river.
- Heiko Muhr shared a new collection of maps the University of California has curated about the work of local German military mapping units in Norway during WWII. (D)
- Dan Scollon shared a new tool for sharing map information called ArcGIS Story Maps. [E]

We had another BAM meeting on January 25, 2022, organized and hosted virtually by Tom Paper. There were about 40 people in attendance.

- Ron Gibbs presented an exhibit about his collection of nautical instruments, including an Octant, Sextant, and an Astrolabe.
- Tom Paper presented about the exhibit of Ron Gibbs’s instruments and how it was created with photos shot recently with a “lightbox” and then uploaded to The Digital Gallery.
- Chet van Duzer presented his upcoming article about cartouches. [E]
- Ken Habeeb presented a map of North America of unknown origin, which, it turns out, was an Arrowsmith map from 1812. [F]
- Nick Kanas presented Volvelle’s, which are wheel charts made out of paper used in the 12th century for astronomical purposes. [G]
- Evan Applegate described his job making aesthetic maps, his career making maps for Business Week, National Geographic, and others, and his encouragement of others to make their own maps. He is most excited about the prospect of reviving engraved maps. [H]
- Dan Scollon presented about GIS (geographic information system) course offerings at Shasta College, where he teaches, and various tools available for people who want to make maps or view maps. [I]
There is no shortage of maps of Boston, from Captain John Bonner’s 1722 colonial era *The Town of Boston in New England*, to John G. Hales 1819 *Map of Boston and Its Vicinity From Actual Survey* and forty years later, to Henry F. Walling’s 1859 *Map of Boston and Its Vicinity From Actual Surveys Under the Direction of H.F. Walling, Superintendent of the State Map. 1859*, a large scale wall map that is a comprehensive geographic and urban map of Boston based on land surveys and coastal charts that presents an image of the city, Boston Harbor waters, Boston Light and Boston’s numerous harbor islands that from first settlement by Native Americans have together comprised the identity and virtues of this locale. The map genres that represent Boston are also numerous: *Boston Directory* street maps of 1789 through 1943; Geo. Walker Lithography Co.’s colorful bird’s eye views of Boston Harbor (c.1923) and Central Boston with the Boston Elevated (1930); U.S. Coast and Geodetic Survey charts of the harbor and approaches (19th-20th-century); aerial photography 19th-20th-century; and 20th-century pictorial tourist maps to name a few. Iconic 18th-century Colonial elevated print views of Boston harbor drawn by English

**Figure 1.** Map of the City of Boston Massachusetts (1926), published by The City Planning Board November, 1926. Inset in red is depicted on page 20.

**Figure 2.** Map of Boston and Its Vicinity From Actual Surveys Under the Direction of H.F. Walling, Superintendent of the State Map. 1859.

**Figure 3.** J.W. Hill engraving titled "Boston". New York: F. & G.W. Smith, 1857.
artists and Colonists such as Paul Revere, with text identifying the array of Colonial Boston’s wharves and piers, the harbor islands, and some building spires identify Boston as its harbor profile seen from an Atlantic Ocean approach. Boston’s 19th-century identity as Boston Harbor seen from across the water is painted at large scale in J.W. Hill’s 1853 watercolor view “Boston” that by 1857 was an internationally published engraved view. We must remember that three centuries of displacement removed the original Native American settlers of this peninsula, harbor, harbor islands, and rich inland territory in order to establish the town of “Boston” in these views.

What more can we learn about Boston, and maps of Boston, from an examination of the Boston City Planning Board’s surprisingly rare 1926 wall map10 Map of the City of Boston Massachusetts (the “1926 CPB Map”)? In many respects, this very large but plain map raises more questions than answers. We shall consider why this map is a new genre of map, the ideas about city identity and city growth it expresses, and the ongoing influence these 1926 ideas have had on the way in which local, state, and federal governments define and control land use in American cities and towns. The 1926 CPB Map is a Boston map of first impression, as Boston’s zoning law and plan were only three years old when it was published, and yet the map embodies deeply entrenched American governmental and civil engineering ideas about a city’s purpose, about whether to keep or discard the legacy of prior generations in that place and how public sector authority can and should structure the present.

The Boston City Planning Board’s Annual Report for 1926 (the “1926 CPB Annual Report”) explains that this map is the first municipal map published in the history of the city:

“During the past year, the Board has completed a new wall map of the City of Boston and has arranged for its publication on the scale of 800 feet to the inch, and also reduced to the scale of 1,600 feet to the inch. This is the first municipal map to be published in the history of the city and has been copyrighted in the name of the City Planning Board of the City of Boston...The preparation of this map was considered a necessary undertaking for the reason that the latest available 800-foot scale map of the City of Boston was published in 1915 and is accordingly of doubtful value so far as present-day conditions are concerned. ...Plans are being made to place one of these wall maps in each department of the city free of charge, together with a limited number of the smaller maps and...by sale through private agencies...the work which was undertaken primarily for the benefit of the City of Boston may be readily available for all of its citizens.”11 (emphasis added)

The Boston City Planning Board’s 1926 decision to publish its wall map was made in the historic context of that year’s landmark U.S. Supreme Court zoning decision Village of Euclid vs. Ambler Realty12 which held that a municipality has authority to regulate land uses by district for the public’s “health, welfare, and safety.” Municipal zoning had been taking root across the country sporadically since 1909. In 1926, prior to Euclid, the federal government, through the U.S. Department of Commerce, convened a board of commissioners who drafted and issued a model state zoning enabling act. In 1924, Massachusetts had already amended the Massachusetts state constitution with Article LX, enabling zoning legislation to regulate buildings “according to their use or construction to specified districts of cities or towns.” Also in 1924, the legislature authorized the City of Boston to enact a “Comprehensive Zoning Ordinance.” The choice of 1926 as the year for the City Planning Board to commit substantial resources to compile, print and publish its own “view” of Boston is no coincidence and is strengthened by the legal foundation established in Euclid.

What appears at first glance to be just a Boston street map is, by its content and absence of certain content, anything but. This map is the result of a paradigm shift both in the law and in city government, enabling the leap from 1914 when the City of Boston Planning Board was established—its scope originally limited to regulating building dimensions and height—to 1924 when Boston adopted its first zoning plan for land use, and, finally, to 1926 when the City Planning Board, with the wind of Euclid at its back, establishes the contours and premises of Boston’s first comprehensive land use plan as driven by traffic studies and a proposed thoroughfare plan. The 1926 CPB Map is drawn from a deliberately municipal point of view by the City Planning Board and represents its definition and image of Boston. The 1926 CPB Map identifies only publicly owned land, primarily Boston’s roads, and recognizes the public hierarchy of federal, state, and municipal land ownership.

The 1926 CPB Map has graphic features made all the more apparent because of the large scale (1 inch equals 6.6 miles) and three-color scheme, blue, black and white. Municipalities abutting Boston are outlined in black and labeled, but those outlined areas are otherwise blank. Major rivers and water bodies are denoted in blue. The primary features labeled on the 1926 CPB Map are Boston’s public streets, parks, squares, certain bridges, the U.S. Army-owned “Boston Airport” and bases, piers within the demarcated “U.S.Pierhead Line”,25 close in harbor islands, and the Chestnut Hill Reservoir, Boston’s drinking water supply. The map’s local coordinates center the map on the Massachusetts State House at zero on the x and y-axis. A draftsman’s small, unlabeled triangle marks the location of the State House on the map. (Fig. 4, next page) These are the “present day conditions” of the CPB 1926 Annual Report.

The title block of this map signals a new genre of map. Under the map title “Map of the City of Boston” and “Published by The City Planning Board” are the five printed facsimile sig-
question: how does the City Planning Board define or explain the city dynamically, functionally, historically, and for the future? The City Planning Board intended that its staff and Boston city departments hang this working map in their respective offices to use as the official map for making policy decisions and appropriating city funds. Why?

Hiding in plain sight is that the 1926 CPB Map expresses the 1926 structure of the City of Boston government, rather than the structure of Boston as a 300-year-old city. As of 1926, the new zoning and comprehensive land use planning authority legally vested in the City Planning Board placed the Board near the top of City Hall’s bureaucratic hierarchy. Despite the jurisdiction of Boston’s other city commissions, such as transportation, Boston harbor, or the sewer system, the 1926 CPB Map represents a political coup of sorts, the Board positioning itself as an umbrella authority organizing all other city commissions.

The 1926 CPB Map, notwithstanding its title as a city map, is a graphic projection of Boston’s municipal agenda. The 1926 CPB Map reaffirms that the city is the road builder who can take private property by eminent domain, heir to those original powers in the 1692-93 Province Laws. The 1926 CPB Report features traffic studies addressing the new phenomenon of car traffic in and through the downtown that read like 21st-century planning board minutes. New road design is driven by the concept of wide “thoroughfares” to guide heavy traffic around the city. Road widening by taking land and buildings for demolition are priorities. The specific example to illustrate a taking for demolition and road widening is Pike’s Alley, a well-used pedestrian alley owned by a synagogue in the West End described as a hindrance to the city’s agenda of interconnecting all city streets for the benefit of automobile flow. The 1926 CPB Report praises the Board for applying the new law “with very little friction” to a city where habits have become crystallized over a period of nearly three centuries (that) speaks well not only for the efficiency of the plan itself
but for the public spirit of the citizens when called upon to accept comprehensive regulations in the interests of the health, safety, morals, and welfare of the people." Did the public voice have a forum?

The City Planning Board’s reliance on the **1926 CPB Map** to prepare the city’s first comprehensive land use plan guaranteed that the parameters of that plan would omit the features which did not appear in the **1926 CPB Map**. The demolitions by authority of the City Planning Board of Boston’s 17th, 18th, and 19th-century places and buildings, as illustrated in *Lost Boston*, have persisted throughout the 20th century led by the same ideas as those expressed by the **1926 CPB Map**. In 1960, when the Boston City Planning Board was abolished and replaced by the Boston Redevelopment Authority, the unleashing of these political powers reached full flower, and demolition of the city began in earnest. Just as in 1926, neighborhoods with the least political influence were removed, and public investments served a preferred set of constituents.

The **1926 CPB Map** coordinates center the map on the Massachusetts State House. One practical advantage of this system is that a geographically decentralized Boston can be drawn at the desired large scale with a minimum of the map sheet used for Boston Harbor. Just as likely, this centering of the map on the Massachusetts seat of government expresses a political feedback loop to the City Planning Board itself. The image and identity of Boston on the **1926 CPB Map** are political.

Today’s Boston is a product of the philosophy underlying the **1926 CPB Map**. The **1926 CPB Map** represents the genre of planning maps that express city planning as a science. The myth of science as being value-neutral guides the graphics in the **1926 CPB Map**, the 1926 City Planning Board annual report, and the Board’s rationale for land takings as its primary urban planning activity. In 1926, and certainly prior, American and other urban planning philosophies encouraged and embraced 18th, 19th, 20th-century images of a city, because cumulatively they reveal the complexity and many facets of city life, the organic growth of the city, and the many hands that formed the identity of a city.

Notes and Maps (see www.spackantiquemaps.com for map photographs and descriptions):

1. *Map of the City of Boston*, City of Boston Planning Board, publisher, Boston 1926. two-color print on four joined sheets, linen-backed, on wood rods, dimensions: 7” x 63”.
3. *Map of Boston and Its Vicinity from Actual Survey., John G. Hales, Proprietor and Publisher, 1819*
5. The Boston Directory *The Boston Directory, 1789 to 1900.*
8. Id. at *Colonial Society Volume. 46.*
9. "*Boston*" after J.W. Hill, engraved by C. Mottram, printed by McQueen, London c.1857
10. I have located no published record of the **1926 CPB Map** in the City of Boston Archives or elsewhere.
13. The Court’s dictum is that the immutability of Constitutional principles is consistent with the court’s consideration of new sets of facts and circumstances that the future presents to make new law.
14. The U.S. Pierhead Line marks the federal boundary and jurisdiction over "...waters subject to the ebb and flow of the tide...." as established by the federal *Rivers and Harbors Act of 1899.*
17. These dense neighborhood street grids are a proxy for enormous population growth in those neighborhoods from 1870 to 1926. The 1870 census counted 12,000 Dorchester inhabitants. In 1920 the count was 200,000 in Dorchester alone, a rate of growth mirrored in the other streetcar suburbs.
20. Jane Jacobs, a Canadian urban planning writer in 1961, condemns the wrecking ball and highrise version of urban planning sweeping America in her classic text *Death and Life of Great American Cities*, in which she champions the originality and chaos, history and culture, and the organic growth of cities. Kevin Lynch, author of *The Image of the City*, MIT Press, Cambridge, 1960, defines a planning process requiring an understanding of the image of the city.

This is a shortened version of Essay #3 in a series of Four to appear in the Calafia Journal. Access www.spackantiquemaps.com for the full version or scan the QR code.
Amongst the 17,000+ cultural items held in the Ethnology and History collections of the University of Alaska Museum of the North (UAMN) in Fairbanks, Alaska, are ten special walrus tusks. Eight of those tusks were created as cribbage boards; a card game likely introduced to Alaska’s communities by the Yankee whalers of the mid-1800s. Two have elaborate engravings of Bering Strait animals of the sea and land mammals of the nearby tundra.

All ten of these full-sized walrus (Odobenus rosmarus divergens) tusks have highly detailed engravings depicting the Bering Sea Coast of northwestern Alaska, from Cape Prince of Wales in the north to Unalakleet in the south (Fig. 1). Created by Inupiaq artists in the early part of the 20th century, these works of art convey a sense of place for people who have spent their lives walking and boating along the miles of shore (Fig. 2).

In 1898, prospectors along the beaches at Nome discovered gold and set off a rush that introduced thousands of newcomers to the area in a matter of years (Cole 1983). As the community grew, a souvenir market was established, and local Inupiaq carvers with thousands of years of ivory engraving traditions shifted their focus to serve that new economy (Ray 1961, 7). The 1892 arrival of a whaling ship captained by Harton Bodfish appeared to have sparked a transition in style from the ancient pictographic depictions found in archaeological assemblages. His meeting with a young carver named Angokwazhuk, later nicknamed “Happy Jack,” resulted in a new and elaborate style of scrimshaw and carving focused on hyper-realism. Happy Jack traveled to San Francisco and back to Nome, and the production of cribbage boards and tusks decorated in this new way exploded in popularity (Ray 1961, 3-10).

“Pictorial engravings” (Ray 1977, 43) focused on the details of animal fur, bird feathers, and the accurate depiction of material culture such as boats, sleds, clothing, and hunting equipment (Fig. 3, next page). Artists from the Nome area adorned full-sized walrus tusks with these depictions and readily sold them to prospectors and early tourists alike, some of which included maps like those included in our collection. During the devastating influenza epidemic of 1918, many of the early Inupiaq carvers died, and there appeared to be an emergence of a new, modified pictorial style pioneered by King Island carvers. King Island is a small island off the coast of the Seward Peninsula, about 90 miles northwest of Nome, and is the ancestral home of the Inupiaq-speaking peoples who call themselves Ugiuvajniut. Seasonally, the King Islanders spent time in Nome to contribute to the ivory carving tourist economy and worked together on the beach where they set up their King Island Village. Here they possibly inspired one another to create this new form of decorated tusks, some of which had maps on the back (Ray...
Figure 3. The elaborately decorated playing surface of a cribbage board by Inupiaq artist Billy Komonaseak of Wales, Alaska, ca. 1940. Dorothy Jean Ray collection. UA94-009-0051.

Figure 4. Cribbage board with map by Billy Komonaseak of Wales, ca. 1940. This is the underside of the tusk illustrated in Figure 3 above. Dorothy Jean Ray collection. UA94-009-0051.

Figure 5. Engraved tusk by unknown artist from the Nome or King Island area. Notice how the writing on the map orients the viewer to see the coastline from south to north (Cape Prince of Wales is north of Nome). Dorothy Jean Ray collection. UA94-009-0043 (detail)
A limited number of carvers at this time continued to focus on the full-tusk engravings, as “a carver can make much more money by carving a number of small objects from a tusk rather than using it whole or as a cribbage board” (Ray 1977, 45).

The Ethnology & History collection at UAMN holds approximately 150 engraved full walrus tusks, including cribbage boards (63) and decorated tusks (88). While many of these items have engravings on both sides, some also use small carved figurines affixed to them to depict hunting or other narrative scenes. Of those ~150 tusks, fewer than 25% of them are credited to specific artists or communities through direct signatures or qualified attributions. The ten full tusks described here maintain that same ratio of known carvers to unknown, and even those artists whose names are noted, we know little of their personal histories. More research is needed to better understand the artistic motivations of these named and unnamed carvers.

The ten tusks highlighted in this article all have artistic depictions on their “top side,” with maps engraved on the underside. These maps are intriguing to the museum staff for several reasons. In general, Alaska Native peoples did not traditionally navigate by using maps in the same way as Euroamericans. Instead, wayfinding occurred through the acknowledgment of elements noted on the landscape with precise and culturally relevant place names. Distances were measured in the time between landmarks, not miles (Lucchesi 2018, 9). Traditional knowledge places importance on the ability to verbally describe one’s precise position in relation to other known locations (Sonnenfeld 2002). Drawn maps would not have been unknown to the Inupiat of the early 20th century. Certainly, the Yankee whalers moving through the northern waters since the 1840s shared their maps with local people. Schools and churches were found in most of the communities across Alaska by this time and maps would have been integral to the educational acculturation promoted by both institutions. One might wonder if the motivation for artists to place the map on the backside of these tusks was to help the buyers better understand the spatial context of the artwork, given the still-enigmatic nature of Alaska and the Bering Strait coast in the early 20th century.

There appear to be no systematic studies of these maps or of the motivations of the particular artists in the popular or scholarly literature associated with early tourist art in Alaska. As researchers like John Cloud (2012) and others (Cole and Hart 2021) bring more focus to Indigenous cartographers, maps like these have potential research value. We at UAMN would love to contribute to research focused on the Indigenous cartography carved onto these tusks.

This article serves as an introduction to our cartographic collection and also as an invitation to researchers interested in early twentieth-century maps of Alaska. The collection is available for viewing in person by appointment, and the individual catalog records are accessible through our online database, Arctos: (https://arctos.database.museum/uam_eh/search.cfm). This saved search will bring up all of the ten tusks mentioned in this article: (https://arctos.database.museum/saved/TuskMaps). Please reach out to the collection manager, Angela Linn, for an opportunity to examine them up close.
References
University of Alaska Museum of the North Department of Ethnology & History, “Search Collections”

Angela Linn is the Senior Collections Manager of Ethnology & History at the University of Alaska Museum of the North, where she has provided access to the diverse holdings since 1996. She holds a BA in Anthropology from the University of Iowa, an MA in Anthropology from the University of Alaska Fairbanks, and is currently an Interdisciplinary PhD Candidate at UAF, housed in the department of Arctic and Northern Studies.
THE LONG AND WINDING TRAILS OF INDIGENOUS CARTOGRAPHY
JOHN CLOUD

Introduction

This essay addresses a set of interconnected episodes of "indigenous cartography" related to the Pacific Northwest, from the Alaskan Arctic to southern California, in a critical period "between the wars," in this case, between the end of the Civil War in 1867, and the beginning of the Spanish American War, in 1898. It was the era in which modern American ethnology and geography developed, while at the same time, most indigenous people in North America were facing erasure, relocation, and genocide, and these developments were complexly related.

Mapping, in many forms, is an ancient human practice. "Indigenous cartography" in the late 19th century transitioned from verbal and informal maps and maps on animal skins and bark to maps on paper. "Carta" is the Italian word for "paper," so "cartography", literally, is writing and drawing on paper. These changes raised two important matters for indigenous cartography: (1) paper was not necessarily a familiar medium to the indigenous people involved, which introduced many complexities; (2) the cartography prioritized language critically. No map ever explains itself, so conversation and commentary about a map is an obligatory part of the map, in its creation and its meanings, which brings up many issues of linguistics and translation.

The Rise of Linguistics

The 19th century was the apex of western imperialism, but other developments in the era contributed to the eventual undoing of the empires. "In the 19th century, linguistics (at first called philology) emerged as a distinct field of inquiry aimed at discovering the general principles of all human languages and their manifestations in the actual variety of all human speech."

Foundational to the very evolution of ethnology/ethnography/anthropology was the recognition that different languages encoded, deep in their very grammatical structures, and their ranked categories of phenomena, implicit meanings that were fundamental to the very identity of the language speakers.

A very complex history must be condensed to fit the constraints of this short essay. At the risk of devolving to a "great men" story, North American ethnology cannot be comprehended outside of a context that includes John Wesley Powell and Franz Boas. Powell (1834-1902) was a one-armed Civil War veteran who founded a series of government agencies, finally named the Bureau of American Ethnology, which progressed in stages from the US Army to the Dept. of the Interior, to the Smithsonian Institution. Boas (1858-1942) was a German immigrant whose major research was in regions of what was becoming Canada. He became a curator at the Smithsonian Institution, then a professor of anthropology at Columbia University and a curator at the Field Museum in Chicago, and later at the American Museum of Natural History in New York City. Boas trained an entire generation of anthropologists and museum curators. Both Powell and Boas spent much of their careers mapping the spatial domains of indigenous North Americans and their languages.

I assert that all "indigenous cartography" involves sophisticated linguistic collaborations, as every aspect of the meanings of the maps require conversations between cultures, related to the graphics and geographies. And as Boas noted: "The great advantage that linguistics offers in this respect is the fact that, on the whole, the categories which are formed always remain unconscious, and that for this reason the processes which lead to their formation can be followed without the misleading and disturbing factors of secondary explanations, which are so common in ethnology, so much so that they generally obscure the real history of the development of ideas entirely." In my view, "indigenous cartography" includes maps made by indigenous peoples but also maps related to indigenous peoples made by others. All these disparate maps converge through language and about language. Powell and Boas are foundational to all this, but I will begin with a significant collaboration between high-status Tlingit leaders in what was becoming Alaska, and scientists of the US Coast Survey.

The Invention of Alaska

The boundaries of what we now call "Alaska" and western "Canada" were defined in 1741 by Vitus Bering on behalf of Imperial Russia. Bering declared that the major boundary between the lands claimed by the Russian Czar, and those claimed by the King of Great Britain, was to be the line of longitude closest to the great Mount St. Elias volcano, which Bering "discovered." In addition, all the mountains facing the Pacific Ocean as far south as Bering sailed, before turning back towards Russia, were also claimed for the Czar, with the backsides of the mountains belonging to Great Britain. This set of boundaries, which, incredibly, still exist, crossed the webs of complex trading routes of maritime peoples along the coast, and inland continental peoples, which had existed for thousands of years.

In 1867, George Davidson of the US Coast Survey was sent north from San Francisco to explore the proposed sale of
the assets of the Russian American Company (aka Alaska) to the United States. But Davidson also wanted to go up the Lynn Canal to the Chilkat River because it was determined that a total solar eclipse would cross that land in 1869. To prepare for this, he met the powerful Tlingit Wolf moiety clan leader Shotridge, who was also known by other names. Davidson knew him as Kohklux. Davidson arranged to return in the summer of 1869 for the eclipse. In addition to observing the eclipse, Davidson wanted to learn about the trading routes from the coast to the vast lands of the upper Yukon River, which were all but unknown to Americans.

In 1869, Davidson returned to what was now "Alaska" to the capital town of Sitka. Kohklux was brought to Sitka, and while there, he drew an initial map for Davidson of the main routes over the mountains and down to the convergence of the main tributaries of the upper Yukon River. Then Kohklux, Davidson, and their parties traveled to the Chilkat River in ocean-going Tlingit canoes and up the river to the great stronghold village of Klukwan. After the eclipse, which was spectacular, Kohklux and his two wives, Tu-eeek and Kaatchxixich, who were Raven moiety clan women from the Stikine River Tlingit, drew a much larger map at Davidson’s request. The "Kohklux map(s)" are now considered masterpieces of 19th-century cartography, well described in many sources.\(^3\) What I will stress here are the maps, as cartography.

The first map was drawn by Kohklux alone on a sheet of Davidson’s drawing paper showing the linear route up and over the coastal mountains and down to the main stem of the upper Yukon River and the return route. In a problem familiar to all cartographers, Kohklux ran out of paper, so the linear routes wrapped around the page. Wiser by the second mapping, Davidson taped together a dozen sheets of drawing paper, glued down to backing linen. This afforded the space the three Tlingit cartographers needed to present the route linearly, at approximately the same spatial scale throughout, with distances estimated by travel days, tallied with marks on the map. (Fig. 1) In the case of both maps, annotations of place names and route features were added by Davidson in his English language orthography of Tlingit, Tutchone, and Han language names. How could they do this? All four, as high-status people in Pacific Northwest society, were fluent in the Jargon, often called Chinook Jargon, or Chinook Wawa, the metalanguage of the Pacific coast. All the initial mapping and annotations were done in pencil, in large part as the mappings could be erased and changed, with thought and conversation over days. Later, back in San Francisco, Coast Survey staff placed a sheet of tracing vellum over the map and ‘picked up’ all map details in pen and India-ink wash, making the map much clearer. (Fig. 2, next page)

In 1867, the Coast Survey published its first map of Russian America. When Davidson returned with the Kohklux maps, the Survey published a revised Alaska map on a different map projection. Examining the sections of both editions covering the area of the Chilkat River and over the mountains to the Yukon, the Survey incorporated the new Tlingit geography of the Kohklux maps. (Fig. 3 & 4, next page)

William Dall (1845-1927) had first traveled to Russian America as part of a Smithsonian party attached to the Western Union Telegraph Expedition, 1865-67. After extensive travels in many parts of the lands on both sides of the Bering Sea, Dall returned to Washington, where he joined the Coast Survey. In 1875, Dall and Davidson created the "Map of the Distribution of Native Tribes of Alaska and Adjoining Territory"—published by John Wesley Powell. (Fig. 5, next page) The base map is the 1869 revised Coast Survey map, converted to a chromolithograph, color-coding language families for the areas known from the direct experience of both Dall and Davidson, along with the direct experiences and cultural knowledge of Kohklux, Tu-eeek, and Kaatchxixich. (Fig. 6, page 29)
California and the Great "Shatter Zone"

In the decades after the Kohklux maps, the distribution of indigenous languages all along the Pacific coast was mapped, an immense collaborative project involving many hundreds of indigenous people, scores of ethnologists, and dozens of cartographers. This short essay can reference only two of these maps, which are particularly important because they were published in Germany and are little known in California.

The California linguist Stephen Powers synthesized the work of many scholars and informants in his treatises on The Tribes of California.4

His original map was redone as a chromolithograph in a summary of Powers’ work by G. Gerland, published in 1879 in Petermann’s Geographische Mitteilungen, then the premier geographic journal in the world. (Fig. 7, next page) The map clearly represents what the later pioneering California anthropologist Alfred Kroeber (1876-1960), who was a student of Franz Boas, referred to as the California “shatter zone” of cultures and languages.5 Indeed, California once had the greatest diversity of native languages in all of North America north of central Mexico. The loss of so many of them, and the people who spoke them, is one of the greatest yet least visible tragedies of the history of California. The Powers map presents the areas of California where people speaking specific languages lived in the late 19th century—all over the state. Contrast that to the small postage stamps of reservations and rancherias and urban enclaves remaining in the 21st century. Once again, California is "the shatter zone."

In 1896, Franz Boas published his Language Map of British Columbia, another beautiful chromolithograph in Petermanns, based on the work of many people. (Fig. 8, page 30) Incidentally, Kohklux/Shotridge had a son, George Shotridge, and a grandson, Louis Shotridge. Louis Shotridge studied under Boas at Columbia and became the first credentialed Native American anthropologist. In the very northernmost part of the Boas map, along the boundary imposed by Vitus Bering, Boas included the linguistic mapping that began with Kohklux, Tu-cek, Kaatchxichixich, and Davidson, extended by Dall and Powell, and Boas—and hundreds of other participants.

As is often the case with excellent cartography, even maps of seemingly linear travel end up “circling back on themselves”; their encoded knowledge and wisdom carry forward through generations, illuminating the paths of those who follow.
**Figure 5.** 1875 Native Tribes of Alaskan Adjoining, Bureau of American Ethnology, National Anthropological Archives, Smithsonian. [BAE, NAA]

**Figure 6.** 1875 Native Tribes Tlingit (crop), BAE, NAA

**Figure 7.** 1879 Survey of CA Indian Tribes, Petermanns
Figure 8. 1896 BC Languages Map, Boas, Petermanns

Endnotes

A POSSIBLE MAP PETROGLYPH FROM KANSAS
LINEA SUNDSTROM

A prehistoric or early contact-era petroglyph from south-central Kansas is tentatively identified as map. The petroglyph uses conventions common to Plains Indian culture to represent trails and settlements. Other Native American maps from the Great Plains represent three cartographic traditions: one functioning in a ceremonial context; one used for informing others about the location of places and routes of travel; and the other serving a narrative function by recording events. The latter includes biographic maps and message maps. The function of the petroglyph map cannot be determined with certainty, but a message or route-of-travel function appears most likely.

Cartographic historians have recognized the presence of a strong tradition of map-making among Plains Indians. Most “maps” were complex mental constructs maintained through oral tradition. Maps translated into more tangible media often were merely sketches in the dirt or sand and thus were not preserved. Other maps were drawn on animal skins. A few of these have survived, as have a number of maps drawn on paper at the request of fur traders, explorers, and military personnel.

Plains Indian maps fall into three basic functional categories: ceremonial, locational, and narrative. The narrative category can be further divided into biographic maps and message maps (Fig. 1, next page). These categories are not absolute. Some maps overlap categories. This functional approach places the maps within the specific cultural contexts in which they were created, used, and curated. Maps are treated not as artifacts isolated from action, but are viewed as a by-product of specific cultural activities. From such a perspective, the success or failure of any given map is relative to the specific purposes for which it was made, not some eurocentric notion of “quality” or “accuracy”.

The Kansas Petroglyph Map

Archaeological site 14EW305 comprises three sandstone boulders with incised designs. Located on private land in south-central Kansas, the boulders overlook Thompson Creek, a tributary of the Smoky Hill River. Some time in the distant past, the boulders broke off from a sandstone cliff along a bluff top. Based on comparison with maps on paper and buffalo hide from the Great Plains, the most complex of the designs probably is a map (Fig. 2, next page). Like other Plains Indian maps, the petroglyph
Native American maps from the Great Plains can be placed into three functional categories. Locational maps contain only locational information. Most of these were made either to guide non-Indians through regions unknown to them or illustrate the discoveries of exploration parties. Narrative maps contain textual information in the form of conventionalized picture-writing. These maps were made to record events or movements. Narrative maps also include representations of the exploits of warriors. Such biographic maps were part of an elaborate and pervasive system of declaring and publicizing individuals’ war honors. Ceremonial maps often illustrated religious definitions of the effective worlds of their users. Such maps were themselves imbued with supernatural power. Like other important religious paraphernalia, ceremonial maps were included in medicine bundles.

By studying Plains Indian maps within the functional contexts in which they were produced and used, researchers can begin to understand the complex and subtle ways in which maps were part of the Plains Indians’ universe.

**Conclusions**

Streams: These are shown as continuous sinuous lines, simplified from, but conforming to, stream courses.

Trails: Trails are shown on Plains Indian maps as continuous lines of dots or dashes, representing human tracks. In later maps, a repeated C-shaped form shows the trail or route of travel of horses or travelers on horseback.

Settlements: Plains Indian maps typically use circles to represent earth lodges or other circular shelters. A tipi, by contrast, is represented by an elongated X. Many maps show villages as clusters of circles or X’s; while those operating at a larger scale may show a single circle to represent an entire village (Fig. 3, next page).

Figure 1. Examples of Plains Indian maps. Upper left: narrative petroglyph from the North Cave Hills, South Dakota, site 39HN30, depicting a warrior’s travels, with a stream shown as a solid line and the route of travel shown as a dotted line; upper right: Lean’s Wolf’s map narration of his horse raid, 1881, National Anthropological Archives, Smithsonian Institution, showing streams as solid lines, Indian village as a collection of circles, white fort as a rectangle, route of travel on foot as dotted lines, and return route with horses as a line of C-shaped horse tracks; bottom: map of the location of the Little Big Horn Battlefield in relation to the Rocky Mountains, Missouri River, and other geographic features, drawn by the Lakota warrior Red Horse in 1881, National Anthropological Archives, Smithsonian Institution.

Figure 2. Possible map petroglyph from Kansas, apparently showing routes of travel between villages.

Figure 2. Possible map petroglyph from Kansas, apparently showing routes of travel between villages.

**Streams:** These are shown as continuous sinuous lines, simplified from, but conforming to, stream courses.

**Trails:** Trails are shown on Plains Indian maps as continuous lines of dots or dashes, representing human tracks. In later maps, a repeated C-shaped form shows the trail or route of travel of horses or travelers on horseback.

**Settlements:** Plains Indian maps typically use circles to represent earth lodges or other circular shelters. A tipi, by contrast, is represented by an elongated X. Many maps show villages as clusters of circles or X’s; while those operating at a larger scale may show a single circle to represent an entire village (Fig. 3, next page).
Endnotes


4 E.g., Rundstrom, ‘Mapping, Postmodernism, Indigenous People and the Changing Direction of North American Cartography’ (see note 2).

5 Lewis, ‘Indian Delimitation of Primary Biogeographic Regions’ (see note 5), 94; Belyea, ‘Amerindian Maps’ (see note 1).


Figure 3. Map of Iowa tribal migrations in the upper Mississippi and Missouri drainage basins drawn by Non-Chi-Ning-Ga, 1837. Cartographic and Architectural Branch, National Archives, Washington, DC.

“The Map Mentors”

Are you an atlas collector starting to look at wall maps? Have you been having a hard time scratching your acquisitive itch during the pandemic? Are you just starting out and trying to figure out where to find the best deals?

Map Mentors is the Society’s informal matchmaking service to help you.

As a librarian, my institution and professional organizations were there to help me learn about vendors and auction houses. How to properly raid other universities’ collections as they downsize. And how to wait for a year for the price of that expensive new electronic product to come down. A couple years ago, a member pointed out to the Society that the equivalent does not exist for the amateur collector. Hence, Map Mentors.

If you would like a Map Mentor, the Society is happy to connect you with a more experienced collector whose interests align with yours. Simply contact Jon Jablonski (jonjab@ucsb.edu) and he will get you started.
When the Spanish arrived on the coast of what is now modern Mexico, they were astounded to find that the indigenous people they encountered had maps. Hernando Cortés, the lead conquistador who orchestrated the coordinated political usurpation of the Aztec Empire’s capital Tenochtitlan, writes that he received a map of “the whole country” from the indigenous peoples he met upon first landing in Veracruz in 1519 (Fig. 1). Across the first years of encounter between the Nahua (those that spoke Nahuatl, the lingua franca of Central Mexico) and the Spanish, there were a number of recorded sightings of spatial documents that were commensurable with the European mapping tradition.

Though none of the map products created before the arrival of the Spanish survive (as the Franciscan friars systematically burned all evidences of pre-Hispanic “idolatry” upon their arrival in 1524), in the years after the encounter, thousands of map products were produced, each which satisfied unique needs for their makers and their communities. Presently, within the Archivo General de la Nación in Mexico City, court documents on sixteenth- and seventeenth-century legal disputes over land rights often have an associated drawn map attached to the records. Such maps, which represent a continuation of indigenous conceptions about land and stylistic traditions from the pre-Hispanic era into the colonial, were considered as acceptable and persuasive evidence in the Spanish audiencia (or court of law), where such disputes were settled.

In addition to the many property and city plans produced by painter-scribes in an effort to picture (and therefore assert) land rights, tlacuiloque incorporated historical memory and storytelling into the painted projection of landscape of other spatial documents. Such maps, called cartographic histories or history-maps, embed historical narratives within spatially-meaningful geographic representations. This means that painter-scribes located events from the past—like migrations, marriages, or wars—within an armature of geography, thereby inextricably linking the past and place. Place was an apt structure to tell histories of migrations and foundations, which center on movement through and settlement in the landscape.

Nahua painter-scribes structured cartographic histories in one of two ways. Some embedded events into a cartographic composition, thereby emphasizing an overall territorial scope to locate the past. This is the case in the Codex Xolotl, which is oriented to the east at the top of the page and displays the then-present lake systems of Central Mexico (painted in blue pigment), as well as a major mountain range that undulates across the upper half of the sheet (here, outlined with black pigment) (Fig. 2, next page). Glyphic place names identify important communities using a logosyllabic writing system; many of the signs take the form of a bell-shaped, dark green hill with different signs atop or within it. For instance, a place named Chapultepec is composed of a grasshopper (chapulin in Nahuatl) atop a hill sign (tepētl); the two signs merge together to prompt the name of the place (Fig. 3, next page). Thus, no alphabetic writing was required to identify places on these maps.

The arrangement of this topography and toponymy approximately emulates the actual physical and sociopolitical terrain of this area. When compared to what this region looked like in the sixteenth century, the positioning of the mountains and lakes corresponds between reality and representation, and
the place names of communities spatially relate to one another. Thus, the makers positioned place signs as an interlocking web that reflects true geography against one another; this manuscript, and many others like it made by the Nahua, is a sophisticated cartographic statement, made more important by the incorporation of complex historical events upon the map face. In the Xolotl, people and their actions fit into the map framework; figures move across the landscape, begin families (whose children marry into other genealogies), and wage war on one another. The painter-scribes strung together narrative sequences that occur in different areas with footprints, which index movement across space.

Other cartographic histories, like the Mapa Sigüenza, combine the web of geography evinced in the Xolotl with another spatial framework, one that subjugates the landscape to the presented history, emphasizing itineraries or sequencing of events over portraying a “true” reflection of the physical landscape (Fig. 4). The Mapa Sigüenza presents the migration story of the Mexica, who depart from their homeland of Aztlan and eventually find the place they will settle within, Tenochtitlan (today called Mexico City). The right side of the sheet of indigenous paper depicts a circuit of stops in their itinerary, composed as a string of place
glyphs in a continuous line. This sequence is like a Metro map that collapses its stops into a straight line, demonstrating sequence but not coordinates.

The narrative begins in the top right corner, at the island of Aztlán (represented as a square filled with blue wavy lines representing water), where elongated figures line up in profile to begin the migration. Their itinerary follows along a thin pathway that twists and turns, first circumambulating the island of Aztlán, then snaking down to the lower right corner before turning upward through the middle of the page, curving through the upper left quadrant and ending at a large sign called Chapultepec, the same place seen in the Xolotl. The pathway meanders throughout the page, passing through signs that represent different mythic places visited by these travelers. Dots next to these place signs express how many years the migrants stayed in each place, thereby inlaying temporal data into the map face.

At Chapultepec, the map transitions into a tableau of geography, like the Codex Xolotl. Below this place, the painter-scribe adds descriptive geographic features (like blue straight lines that signify canals and marshy vegetation) that identify this environment as lacustrine. An itinerary still appears, indexing movement into and through this landscape, but the place signs in the lower left side of the page adhere to a cartographic web, their positionalities on paper mimicking the actual environment.

The Codex Xolotl and the Mapa Sigüenza’s makers decided to use a map-like format to give viewers a better understanding of the spatial relationships of historical events. Although geographically-motivated histories are diagrammatically advantageous as a presentational framework, for the Nahua, space was the prime way to preserve and create historical memory. Miguel León-Portilla contends that the Nahua believed that the harmony of the universe was maintained through the “spatialization of time,” meaning that the passage of time (through which history unfolds) was equivalent to moving through space. Thus, time/event and place were synchronous, overlapping, and mutually-influencing concepts to the indigenous people of Mexico, and a cartographic history stabilized these three elements together. At the same time, like all maps, cartographic histories propose, rather than objectively reflect, landscape. The Xolotl depicts the stories and genealogies of the royal house that commissioned it and minimizes the size and importance of other places that were depicted as politically significant in other manuscripts. Likewise, the Sigüenza’s narrative is centered around a single group, the Mexica, and the depicted geography is laser-focused on the sites that were important to the story being told while inevitably excluding other places. Thus, each cartographic history had an agenda with its own narrative needs and is a text to be read, rather than a documentary representation of “true” landscape.

Endnotes
2 This essay uses the classifier “Nahua” instead of “Aztec” to describe the people of Central Mexico because “Aztec” is a Western term, popularized by Alexander von Humboldt; the peoples of the ”Aztec” Empire would never have called themselves as such. Nahua refers to a group with a shared linguistic tradition and accounts for continuity after the conquest.
3 Miguel León-Portilla, Aztec Thought and Culture, translated by Jack Emory Davis (Norman: University of Oklahoma Press, 1963), 56.

Suggested reading:

Publisher’s Note: See also David Kalifon’s article on the early maps of Tenochtitlan in the Spring 2021 issue of Calafia?

Hayley B. Woodward is a Ph.D. Candidate in the Art History and Latin American Studies program at Tulane University, where she earned her M.A. in Art History as well. Her research centers on Nahua artistic and historiographic practices as evinced in painted manuscripts. She is currently a Predoctoral Fellow at the Getty Research Institute and has held the Center for Renaissance Studies Consortium Fellowship at the Newberry Library.

❖

Follow us on Social Media!

facebook.com/
@CalMaps
From the Ground Up: Indigenous Participatory Mapping in Borneo
Daniel Scollon

"Maps ... exert a social influence through their omissions as much as by the features they depict and emphasize." – J.B. Harley, 1992

Borneo is a hotspot of global biodiversity, home to the orangutan and the oldest rainforest on earth. The human history of the world’s 3rd largest island has been written by waves of migrants, dating back tens of thousands of years. Yet analysis of four decades of satellite imagery revealed that only 50% of Borneo remains under forest cover (Ramsey, 2016). Throughout history, maps have enabled explorers, empires, and exploitation, but today they are also being created by marginalized Indigenous peoples.

My father, Cal Scollon, was working for the Asia Foundation in the mid-sixties when he brought our family to live in Sabah, in the newly independent Federation of Malaysia. Thirty years later, I returned to initiate a participatory mapping program under The Borneo Project, a Berkeley-based non-governmental organization (NGO). After more than 25 years, the mapping program continues to support the mission of defending Indigenous rights to land and livelihood.

A contemporary relief map of Borneo (Fig. 1) reveals a mountainous interior that culminates at Mt. Kinabalu, the highest peak between the Himalayas and New Guinea. A complex network of rivers remains a primary conduit into the interior to this day. The rugged terrain also defines the boundary between the Malaysian states of Sarawak and Sabah, to the north, and Indonesia’s Kalimantan provinces. The oil-rich microstate of Brunei faces north to the South China Sea. Borneo is part of the world’s largest archipelago, with some 11,000 islands forming a continuous chain extending 5,000 kilometers eastward from mainland Southeast Asia to the western Pacific.

The study of the biogeography of this region extends from the mid-19th century to the present, and provides the scientific basis for the need to protect large tracts of habitat, especially on species-rich large islands, such as Borneo (Wallace, 1869; Wilson & McArthur, 1967; Dunn, 2021). Meanwhile, researchers in Brazil have found that 90% of Indigenous territories had higher forest retention than surrounding areas, demonstrating the value of native land management (Begotti & Peres, 2020).

Participatory mapping emerged in the 1990s to document Indigenous knowledge of place, based on a framework that put communities at the center of the mapping process (Aberley, 1993). This was supported by research on the socio-political implications relating to “reinserting people on resource maps,” which introduced the idea of counter-mapping to historic state-control of mapping (Peluso, 1995). Over time, participatory GIS (PGIS) would come to play an important role.

Indigenous communities in Kalimantan, Sabah, and Sarawak have embraced community-based participatory mapping and GIS to counter the forces that are undermining their lives and livelihoods. These include land expropriation, commercial logging, and plantations. Local and international NGOs support these efforts by procuring equipment and materials, arranging transportation and other logistics, and conducting training, all in spite of limited resources.

Participatory mapping relies on trust and community support. Outside experts may provide guidance, resources, and appropriate technologies, but only in the service of Indigenous self-determination. Some communities are reticent, fearing that mapping could result in further exploitation by logging and palm oil companies or retribution from the government. Peluso reminds us that “Mapping of forest resources is an intrinsically political act: whether drawn for their protection or production, they are drawings of a nation’s strategic space.”

Figure 1. Borneo Shaded Relief (Scollon, 2022)
In 1994, fresh from grad school, I traveled to Kalimantan, Sarawak, Sabah, and Brunei to assist in mapping workshops sponsored by a Canadian NGO. The next year, with eight volunteers of The Borneo Project, I conducted the first workshop in Sarawak. Upon our arrival at the remote kampong of Keluan, we were greeted with ceremony, food, dance, drink, and stories. Descendants of the once fearsome headhunters showed themselves to be gregarious and generous hosts. We presented gifts that included art supplies and blank paper and encouraged young and old to draw in their personal places and features of interest. Inflatable globes and wall maps were used to explain concepts such as relative location, coordinates, and scale.

Interviews with leaders and members of the community helped set the priorities for mapping. Responses helped determine the location of farm plots, hunting and foraging areas, sacred sites, and boundaries with neighboring communities. Field mapping was conducted using a compass-and-tape method, in which crews recorded bearing and distance between stations along transects. GPS was helpful for determining coordinates of strategic locations, but forest canopy and degraded signal from selective availability limited its utility. Next, the data were hand-plotted to scale. In spite of the survey department’s restricting our access, an illicit 1:50,000 scale topographic map permitted tracing of prominent features. Additional features of interest were added, along with title, legend, and other elements, resulting in a first-of-its-kind participatory map under the Uma Bawang Residents Association (Fig. 2).

In 2000, a landmark court victory recognized native customary land rights for a village in Sarawak, in part based on community-produced maps. Enshrined in the constitution since colonial times, these rights were seldom recognized for lack of maps demarcating boundaries. In response, the state passed a law in 2001 outlawing the creation of maps by anyone but a licensed surveyor. Regardless, the victory prompted a flood of requests to map village lands. Local NGOs ramped up their capabilities and began mapping throughout Sarawak (Bujang, 2005). Key to these ongoing efforts is the relationship between local NGOs, such as BRIMAS, PACOS, and Save Rivers, and international groups such as The Borneo Project.

By this time, geospatial technologies were increasingly deployed to expand the reach and efficacy of mapping (Fig. 3). Because geographic information systems (GIS) require technical profi-
ciency, local NGOs identified candidates to receive training, which prepared them to lead community mapping. GPS also became increasingly important for field mapping as capabilities improved. Field-captured ground features were then integrated into geodatabases. These data were complemented by publicly-available data, which has proliferated in recent years. Mapping also supports other initiatives, such as micro-hydro power, Indigenous language pre-schools, and local economic development. To date, these programs have served scores of native villages and hundreds of individuals.

Despite the successes of community mapping, there remains a number of challenges. The most significant are the internal and external forces that undermine native land sovereignty. In addition, the accuracy of community maps has been challenged in some cases, revealing insufficient training and difficulty in transferring spatial knowledge to maps (Cronkleton et al., 2007).

Divisions also emerged within communities, with some residents either siding with the companies or fearing government reprisal. At the same time, NGOs have struggled to meet the demand for mapping with limited financial and human resources.

Borneo’s forests have been ravaged by logging, plantations, and mega-dams (Fig. 4). Plans for 12 dams, financed by Chinese corporations connected to Sarawak political elites, have thus far resulted in the construction of the Bakun Dam in the Rajang watershed. With plans advancing for a dam on the Baram River, a campaign of opposition was undertaken by Indigenous communities and supporting NGOs. The media attention, along with a change in government, caused the proposal to be shelved in 2017. Meanwhile, communities in the upper Baram proposed an alternative in the form of an Indigenous-lead ecological peace park.

With a fund-raising campaign underway, a survey of flora and fauna of the upper Baram watershed was begun in 2018. Technicians from three Penan and Kenyah territories were employed, working under the guidance of American and Malaysian scientists and NGOs. The survey involved three villages, with each laying out four transects of 4 kilometers in length. Each transect was surveyed twice per month, for a total of 10 months spread out over two years. The resulting data represent an invaluable census of this region that acts as vital refugia for species. Work is presently underway to build a GIS database and analyze the results (see preliminary example map in Fig. 5).
The once-nomadic Penan are some of the most vulnerable of Borneo’s 40 ethnic groups. In response, the Bruno Manser Fund, named for a Swiss national who brought attention to the plight of these people in the 1980s, sponsored the Penan Community Atlas (Canon, 2018). This ambitious project deployed drones, GPS, and field crews and resulted in beautiful and culturally significant maps (Figs 6a, 6b). Among the Penan leaders of this project was an alumnus of workshops hosted in the 1990s. He was also part of an international delegation that met with Yurok Tribe activists on California’s north coast in 2016.

Today, the magnitude of the threats to biodiversity and Indigenous cultures has global implications. As we collectively struggle to mitigate the impacts of habitat loss and climate change, maps must play a role in charting a path forward. Participatory mapping and GIS present a bridge between modern mapping capabilities and the deep wisdom and traditional ecological knowledge of ancient cultures. Our willingness to support and embrace such efforts may have far-reaching effects for the years ahead.

For Accompanying Digital Resources go to dscollon.fivepaths.com
Daniel Scollon has taught Geography and GIS at Shasta College since 1996 and is a registered GIS Professional. His current research is in the Klamath Mountains, where he leads field courses. Dan holds a B.S. in Computer Science (Cal Poly, ‘86) and an M.A., in Geography (SFSU, ’94), and is an alumnus of the East-West Center in Honolulu. He is a co-founder of NorthStateGIS.org, and believes in the power and potential of maps.
It is difficult to select one favorite map, since I have many that are special to me for various reasons. I am drawn to maps that combine scientific, historical and educational content with artistic and decorative features. For this reason, I am most attracted to the 17th century maps of the great Dutch and English cartographers, such as Blaeu, Jansson, and Speed, as well as celestial maps of Cellarius and Doppelmayr. Of these, I am most drawn to maps with vignettes displayed around the map’s periphery. I have a series of these, including maps of Europe, Asia, and Africa, but my favorite is Willem Janszoon Blaeu’s (also known as Guillaume Blaeu) map of North and South America entitled “Americae Nova Tabula,” first created in 1617 and later included in his “Theatrum Orbis Terrarum, Sive Atlas Novus” atlas in 1635 (Fig. 1).

Why is this map among my very favorite? In part, it is because it is beautiful, in great condition, and an early depiction of our part of the world at a time that knowledge of the Americas was in its infancy compared to many other parts of the world...and then there are the beautiful vignettes.

I think of vignettes as a technological advance for the pre-internet, photography, video, and television era. People did not have access to National Geographic, Smithsonian Magazine, etc. These vignettes provided 17th century Europeans with a glimpse of what inhabitants of the “New” World looked like and how they dressed. They also included miniature maps of the principal cities in the regions included on the maps. Maps like this one may have inspired future explorers in the 17th and 18th centuries’ “Age of Discovery,” during which there was an increase in both interest and funding for projects with political, territorial expansion, economic and scientific goals.

Although the Blaeu map of the Americas had many of the usual inaccuracies and areas lacking in detail common to all early maps of the region, it did not depict California as an island, as did most other maps of its era and for the next 100 years. In a way, I wish it had. If so, I would love the map even more since I have a strong interest in maps showing California as an island. Cartographically the map was updated from earlier editions to reflect a better understanding of Tierra del Fuego and the Strait of Magellan. It also includes Hudson’s Bay, although the Great Lakes are not shown. The east coast of North America, in the vicinity of the Outer Banks of North Carolina, has an exaggerated outward bulge, a cartographic error derived from earlier maps by Mercator/Hondius. Highlights of this region include the identification of Norumbega or Nurmebeg, which was a legendary region of imagined gold and riches, where the houses had pillars of gold, and the inhabitants carried buckets of pearls on their heads. Norumbega was thought to be in the northeastern portion of North America, in the vicinity of present-day Bangor, Maine, in New England (Fig. 2). It was featured on many early maps from the 1500s until European colonization of the re-
gion discounted its existence, which occurred after the publication of this map. The legendary El Dorado is depicted in northern South America, named Manoa al Dorada (Manoa the Golden). The name El Dorado initially meant "The Golden One," which referred to a mythical king that covered himself in powdered gold during ceremonies. It eventually was used to refer to a region or city of abundant gold and other riches. Many Spanish and German conquistadors and English explorers mounted expeditions to the region searching for gold, including Sir Walter Raleigh, from the court of Queen Elizabeth I, and Gonzalo Pizarro, the younger brother of the Spanish conquistador Francisco Pizarro, who had earlier conquered the Incan empire in Peru. While unsuccessfully searching for gold, Gonzalo discovered the Amazon River, which he named for a tribe of female warriors that had attacked his army during the expedition. Rio de las Amizones is shown on this map, just south of the supposed location of El Dorado, as well as a large imaginary lake, which was given the name Parune Lacus (Fig.3).

The interior portion of the map of South America includes small images depicting the life of the indigenous people of the continent, including images of natives, at least one animal, some trees, and a living or meeting structure. No such images are seen within the map of North America. The map illustrates more detail of Latin America than North America due to the much longer and sustained Spanish and Portuguese presence in the area.

At the lower edge of the map are the words "Terra Australis Incognita", referring to the large landmass thought to occupy the lower portions of the southern hemisphere until disproved by Captain James Cook during his 2nd voyage of discovery 1772-1775.

Along the map’s lateral borders are colorfully detailed miniature engraved vignettes of pairs of indigenous Native North and South Americans from various regions included on the map, attired in the typical costumes of the area. On the left from top to bottom, these include: Groenlandi (Greenland), Virginiani, Rex et Flordie (King of Florida), Nove Albions Rex (King of Nove Albion or California), and Mexicanii (Fig’s 4 & 5). Nove Albions was the name given to present-day California by Sir Francis Drake when he landed in what is now Point Reyes, north of San Francisco, and claimed the area for England. Along the right margin from top to bottom are Peruviani, Brasiliani, Brasiliani milites (warriors), Insulani de la Moche in Chile (Moche Islanders in Chile), and Freti Magellanici accolie (the Straits of Magellan) (Fig. 6).

In addition, miniature maps of the most prominent colonial harbors and cities of the time are depicted across the upper margin. These include from the left: Havana, Santo Domingo, Cartagena, Mexico, Cusco, the silver mines of Potosi in Bolivia, La Mocha Island in Chile, Rio de Janeiro, and Olinda in Pernambuco, Brazil (Fig’s 7, 8 & 9). Eight detailed images of fully rigged ships flying their countries’ flags embellish the oceans, along with four sea monsters, which add to the decorative drama of the map.

The northwest coast of California appears elongated, with Mendocino depicted at the northernmost portion of the visible coastline. At the southern tip of California (present-day Baja California) is C. California (present-day Cabo San Lucas), where pirates would lay in wait.

![Figure 2. Magnified view of North and Central America, Cuba and Caribbean islands.](image)

![Figure 3. Magnified view of northern South America centered on Manoa al Dorado (the mythical El Dorado), Prune Laces (a large imaginary lake) and Rio de las](image)
for ships making landfall for repairs and supplies. The east coast of America was dominated by what was then Virginia and Florida, later to become the present-day smaller southeastern states. Landmarks on the map include somewhat recognizable names, such as Chesapioc (present-day Chesapeake in Virginia) Hatoraske (present-day Hatteras in North Carolina), Charlefort, and Port Royal in present-day South Carolina. The east coast of Virginia has an exaggerated convex shape. The northern portions of the midwestern region of the United States and adjacent Southern Canada are simply labeled Francia (referring to its control by France) and show very little detail. Hudson Bay is depicted, and the St. Lawrence River is shown arising from small imaginary lakes. Aquapulco (Acapulco), Guadalajara, and Mexico City are present, and Central America, Cuba, and the Caribbean Islands are shown in detail.

There is an inset map of Greenland, Iceland, and the imaginary island of Frislandia, as well as a cartouche containing Latin text overlying the northern portions of North America, which, at least in part, serves to distract the viewer from the vast unexplored areas that are devoid of geographic detail. To the east, the western coasts of Spain and the African continent are included, and to the west the unexplored Pacific Ocean, along with several mythical islands here, as well as in the Atlantic Ocean.

This map encapsulates all that I love about map (and antiquarian print and book) collecting. The ability to own a piece of significance and beauty that has survived hundreds of years longer than its creators and hopefully hundreds more years if properly cared for by its future owners is thrilling. I enjoy drilling down to the details illustrated on an early map that exhibits the state of knowledge at the time, both accurate and especially inaccurate. As an academic, I am passionate about researching the life and interests of the cartographer/artist, the piece’s subject matter, and its history. I am particularly attracted to maps, prints, and books that combine science, history, and art. I also love the hunt for an item that is difficult to attain and the satisfaction that comes with acquiring it. However, this is a double-edged sword, for there is always the possibility for disappointment resulting from the ones that got away, of which there are many. I guess that’s why we play the game.

Figure 4. Vignettes on the left of indigenous people and their typical costumes from Greenland, Virginia, Florida, California and Mexico.

Figure 5. Magnified view of vignettes on the left of indigenous people and their typical costumes from Virginia, Florida, and California.

Figure 6. Vignettes on the left of indigenous people and their typical costumes from Peru, Brazil, Brazilian warriors, Chile and the Straits of Magellan.
Richard Breiman is a lifelong collector. As an adult, he collected stamps, vintage watches, African and New Guinea ethnic art and antiques, including scientific instruments. He has been a passionate collector of maps, prints and books for over a decade. Richard’s map collection is eclectic, but is frequently focused on pieces that combine scientific and artistic elements. His print collection includes old masters, travel and exploration, topographical and architectural views, botanicals, animals, and English caricatures. His favorite illustrated books include Captain Cook’s journals of exploration.

A retired physician, medical school professor, and researcher, Richard was featured in Meet Our Member in the spring 2019 issue of Calafia, pp 41-42.

References:
Goss, J. Mapping of North America, #26
Goss, J. The Mapmaker’s Art, Pl. 4.24, pp. 110-111
Held in the vaults at the Bodleian Library are an amazing collection of maps of Oxford. One of the most interesting though isn’t that beautiful and it certainly has little cartographic value. It is fascinating because of what it reveals about my home town, its underlying social history and the contrasts between the classes that lived in Oxford in the 1880s. Used regularly in reader sessions the initial reaction to the ‘Drink Map of Oxford’ (Fig. 1) is laughter at the idea that our straight-laced Victorian antecedents could have produced what appears to be an 1883 pub guide.

The simplest of skeleton plans has four different red symbols which mark the location of the pubs, breweries, licensed premises and beer houses in the city, 319 in total. Of this total the pubs make up nearly half, and quite a few of these still survive nearly 140 years later, though Covid has taken its toll. There are no longer any breweries in the city and the licensed premises shown have mostly been replaced by supermarkets. Beer houses are where people in private dwellings were able to get a license to sell alcohol out of a room in their house to supplement income. Beer houses tended to be in the smaller side streets, closely packed together in the poor parts of the city, selling beer and gin at a cheaper price than the pubs that line the busy main streets.

With no obvious publishing information it is only when you look at the text on the reverse (Fig. 2, next page) that you begin to understand the true purpose of the map. It was published by the Oxfordshire Band of Hope and Temperance Union, one of a number of temperance societies in the city which were dedicated to eradicating the damaging effect of alcohol on the poor and working class. The text highlights the concerns the Union had and questions how much better the lives of the poor would be if their money was spent on improving living conditions instead of alcohol, which led to ‘idleness and ill-health, and very frequent poverty and crime’.

According to the text the reasons for the large amount of premises in certain areas compared to others comes down to class. The working class parts of the city are over-represented because the magistrates—who tend to be drawn from the middle classes in the north of the city—are happy to give licenses in these areas but shy away from providing licenses to property near their own homes.

It’s worth at this point giving some background to the city at the time the map was made. Long famous as one of the most important university towns in Europe Oxford had started to develop as an industrial city with the arrival of the canal in 1792. As a consequence of the agricultural revolution and the loss of rural jobs Oxford’s population grew dramatically as people moved out of the country and into the town, increasing by 30,000 between the mid-1700s and the first census in 1881. It is this rise in population that has created the over-crowded and poorly sanitized parts of the city that are so heavily featured with symbols; to the west is the suburb of Jericho, bordering the canal and home to the iron foundries and Oxford University Press, to the south west St Ebbe’s, a parish with a long history of slum housing and disease made worse by the recently built City Gas Works, and St Clement’s to the south east. This disparity of distribution which is another bone of contention with the Temperance Union.
The Oxford map is just one of a number of temperance maps of English towns. All of a similar design, examples exist for Manchester and Norwich while a map of London showing public houses pulled no punches with the title, *The Modern Plague of London*, and shows a spread of pubs in the city to equal, if not surpass, those in Oxford. These Drink Maps have natural cartographic parents, their use of skeleton plans and symbols resemble disease maps that had begun to appear at the turn of the century. In England the most obvious example would be Dr John Snow’s cholera map of Soho in London in 1854. This map plotted on a simple street plan markers indicating cholera fatalities, and in appearance is close to the drink maps that were to follow. There is a similar map made about cholera outbreaks in Oxford in the 1850s, again symbols are used to show fatalities. Areas of poor sanitation are shaded in, and these shaded areas match the areas on the Drink Map with large numbers of symbols.

How do we view and interpret The Drink Map 150 years later? When shown in exhibitions or private viewings the initial reaction is always laughter, to think that our Victorian antecedents, usually looked on as traditional, straight-laced people, could produce something purely pleasurable about alcohol seems strange. Then when you explain the map’s purpose, the publisher and the text on the reverse the effect is always the same, more laughter at the irony of what appears to be two opposing messages. We do have to acknowledge though that this initial impression is as a result of library practice. The map would have been bought folded, with title and publisher and, as a result intention, immediately apparent. At the Bodleian we store our maps flat, so it’s our storage methods that has created this effect.

The moral message behind the map seems more in keeping with people who believed in restraint and improvement, both for the self and for those less fortunate. We impose a social meaning onto the map because we know the circumstances in place dictating what class of people lived where. By ignoring completely any showing of University (the only map of the City in the collection at the Bodleian to do so) this is a map for and about the people of Oxford. 


Figure 2. Bodleian Library C17:70 Oxford (7)

With an upper and middle class lifestyle more in favour of entertaining at home or in restaurants than public houses class would inevitable play at part. This is acknowledged in text on the map, ‘The wealthy man’s family usually have beautiful gardens in which they spend their time and a public house is rarely allowed to touch their walls; the poor man’s children are often of necessity in the street. Drink shops are thrust into their midst...’. The text in the back isn’t being entirely honest though. Claims that the magistrates are drawn from the more affluent northern suburbs is soon shown to be wrong when looking at contemporary directories. With lists of magistrates and their home addresses these show a geographical distribution throughout the city, with one even living next to a beer house one of the poorer areas.

Even with a cursory look at the map it is obvious that the centre and north of the city have far fewer symbols than other areas. As the text says ‘The law is the same for the rich as it is the poor, but the gentlemen who have the power to grant licenses generally use their discretion by refusing applications for permission to sell drink to the rich’. This is another example of the text not being entirely honest. Most of the centre of the map is taken up with university and college buildings and the large open space of the University Park while in the north St John’s College was, and still is, a major land owner and when selling land for housing and development the college usually put a proviso in the contract that there wouldn’t be any licensed premises built.

The Oxford map is just one of a number of temperance maps of English towns. All of a similar design, examples exist for Manchester and Norwich while a map of London showing public houses pulled no punches with the title, *The Modern Plague of London*, and shows a spread of pubs in the city to equal, if not surpass, those in Oxford. These Drink Maps have natural cartographic parents, their use of skeleton plans and symbols resemble disease maps that had begun to appear at the turn of the century. In England the most obvious example would be Dr John Snow’s cholera map of Soho in London in 1854. This map plotted on a simple street plan markers indicating cholera fatalities, and in appearance is close to the drink maps that were to follow. There is a similar map made about cholera outbreaks in Oxford in the 1850s, again symbols are used to show fatalities. Areas of poor sanitation are shaded in, and these shaded areas match the areas on the Drink Map with large numbers of symbols.

How do we view and interpret The Drink Map 150 years later? When shown in exhibitions or private viewings the initial reaction is always laughter, to think that our Victorian antecedents, usually looked on as traditional, straight-laced people, could produce something purely pleasurable about alcohol seems strange. Then when you explain the map’s purpose, the publisher and the text on the reverse the effect is always the same, more laughter at the irony of what appears to be two opposing messages. We do have to acknowledge though that this initial impression is as a result of library practice. The map would have been bought folded, with title and publisher and, as a result intention, immediately apparent. At the Bodleian we store our maps flat, so it’s our storage methods that has created this effect.

The moral message behind the map seems more in keeping with people who believed in restraint and improvement, both for the self and for those less fortunate. We impose a social meaning onto the map because we know the circumstances in place dictating what class of people lived where. By ignoring completely any showing of University (the only map of the City in the collection at the Bodleian to do so) this is a map for and about the people of Oxford.


*Stuart Ackland* works in the Map Department at the Bodleian Library. He, along with other colleagues, writes regular blog posts about the Bodleian map collection, helps readers and the general public with enquiries and looks after the storage of over 2 million maps held in the library. One of his favourite pubs is also one of the oldest in Oxford, the *Kings Arms*, which appears on the Drink Map.
Slated Globes
Leonard Rothman, M.D.

Cartographic globes can be divided into two categories: celestial and terrestrial, including both earth and other planetary bodies. Circa 127-180 ACE, Claudius Ptolemy outlined the design of a celestial globe in his *Almagest*. A mythical figure of Atlas, holding up a celestial globe, a Roman creation, was carved in marble in the 2nd century ACE. The earliest known and still existing map globe was created by Martin Behaim in 1492. In 1576 the explorer Martin Frobisher, on his way to explore the unknown vastness of North America, carried a blank globe on his ship, upon which he planned to carve his geographical findings.

While flat blackboards made of wood have been known and have actually been used for musical composition since the 16th century, the spherical blackboard is thought to have existed for only 190 years. Also known as a slated globe, a chalk globe, a blank globe, and or a slated outline globe, this globe is usually all black, all white, or with black, blank continents, each outlined in yellow, and surrounded by blue seas. Slated globes could be of any size and were usually 6-20 inches in diameter and mounted as table or floor models. Chalk, crayon, or marking pens can be used to write on these globes, which can then be cleaned and erased for repeated use. Slated globes have been primarily used for teaching either geography or mathematics, in particular Euclidean geometry.

Josiah Loring (1775-1840), a well-known American globe maker, recorded his manufacture of blank globes in the 12/1831 issue of *The American Annals of Education and Instruction*. These became very popular teaching tools in American schools and were used in educational settings for students from the 4th to the 12th grade. Mahshid Mayar, in her 2020 article in the *European Journal of American Studies*, “What on Earth! Slated Globes, School Geography and Imperial Pedagogy,” notes that slated globes were used in the United States to teach existing geographical knowledge and to stimulate a geographical imagination of America’s future throughout the world.

Records of German, Austrian, and British use of blank globes in educational settings appear as late as 1846, and Mayar believes that these were used to teach each nation’s students their respective country’s local and international presence in the world as both a static and a permanent event.

Although they may generally no longer be used in formal instruction in educational settings, slated globes continue to be available today. They can be purchased on the Internet, in-home product stores, gift shops, antique stores, and other venues. It is even possible to convert an old map globe to a blank spherical “blackboard”! Instructions for the conversion process can also be found on the Internet.
Blank globes continue to be popular teaching tools for geography today—in a modern version! These are plastic globes, generally solid light blue in color to denote the oceans. They have detachable continents, with small wedges on the reverse, such that each can only be placed on the globe in its correct location. Students can note the name of each continent on the white wedges, thus learning names, locations, and shapes of each.

Bibliography


Harvard Natural Sciences Lecture Demonstrations: sciencedemonstrations.fas.harvard.edu/presentations/spherical-blackboard


Omniterrum: https://www.omniterrum.com/globe-inventory/20-inch-denoyer-geppert-project-globe

Dr. Rothman is a frequent contributor to Calafia, and collects Holy Land maps, map globes, maps on neckties, and maps of war. His Holy Land collection can be viewed at Searchworks at Stanford University.

By now, many of us likely have one of those people in our circle who say words like blockchain, cryptocurrency, NFT (non-fungible token), or even metaverse. Blurred vision, ringing in the ears, or brain fog are all symptoms we may experience when entering into a conversation with said people. After these symptoms subside, though, there just may be one that lingers—a desire to understand what those words are all about.

In my circle, that person is none other than my brother, Thomas Olson, co-founder of Vevue with Kathrine Reyes and Xiangyu Meng, aka Codeer, a mobile application that utilizes blockchain technology, such as micropayments, to financially reward users and media makers for their engagement. In 2014, he became a "vinyl with a scratch on it," and those words were the loop. I listened politely because he was my brother, but I, a regimented military veteran pursuing a career in librarianship, was really thinking "sure, sure." Now, in the year 2022, I, along with millions of others, am listening to him a bit closer.

**Vevue Map Running App:**

Vevue's story really began in 2012. As Thomas shared with a wink, the word Vevue comes from the non-existent French word for video review, the initial intention being to enable crowdsourced video reviews. I am going to jump to 2018 because we cartophiles undoubtedly need to see the word map sooner rather than later. That year, I moved to the Bay Area and began working as a map librarian at Branner Earth Sciences Library & Map Collections at Stanford University. This move corresponded temporally with a new Vevue feature: Map Running.

Map Running (Fig. 1) is a challenge to users, who can earn tokens by visiting locations marked on a digital

---

**Figure 1.** Map running feature in the Vevue application displaying four algorithm-generated locations in the Los Angeles area to visit in exchange for earning tokens.

---

**Figure 3.** 8in. plastic LEARNING RESOURCES plastic globe with removable continents Rothman collection
map in the Vevue application. These locations are determined in either of two ways: (1) an automated airdrop algorithm and (2) user requests. The algorithm currently pinpoints public areas of interest, such as parks or gardens, near the user’s current location.

User requests are generated by others using the application and generally include a request for a video of the area the person making the request wishes to view. Users who live near a user-requested location can respond to the request and earn tokens in an amount determined by the requesting user. Want to see a live view of the Eiffel Tower at sunset? Blooming cherry blossoms in Japan? Waddling penguins in Antarctica? User requests enable these kinds of opportunities while also giving other request responders the opportunity to earn income just by sharing the world around them.

I used this feature to begin exploring my new surroundings in Fremont, California. One of the algorithm-generated locations was a short walk from my apartment to Central Park. No, not that Central Park! The recreational trail curving around Lake Elizabeth, with Mission Peak Regional Preserve (Fig. 2) as a backdrop, serves the moniker well, however. To simply say that the location became my favorite running spot is an understatement: the sunrises and sunsets viewed there was my comfort as I adjusted to moving to an area without friends or family, completed my MSLIS, and acclimated to a new work environment.

The second map-running location I explored near Fremont was the historic town of Niles. Although the main street, lined with vintage cars and antique stores, was endearing, the map-running algorithm led me to an obscure, ivy- and flower-covered fence and a door with the word "leaf" (Fig. 3) painted on it. As anyone who has read The Secret Garden by Frances Hodgson Burnett knows, this is the moment for which we’ve all been waiting. As it turned out in the map algorithm, "leaf" is indeed a garden, a community garden to be

And just like that, my brother had me engaging with blockchain technology, along with maps! While the adventure of discovering new places was incentive enough, I also did earn tokens just by visiting the marked map locations. I shared the adventure by uploading a video of each location to my Vevue profile. The videos provided real, tangible views of these beautiful sites for curious other visitors, or alternatively, for people to be able to see a location that they may never be able to visit.

Map to an app: Having the benefit of being able to speak directly to Vevue’s mappy app co-founder, I was intrigued by the insights that my brother provided into the process that can move a mobile application forward by utilizing a developing, and, let’s be honest, totally mind-boggling, technology to realize a new concept and a new application. As he shared these details, I couldn’t help but think of his process as a road map for development of an idea into a creative mobile application (Olson, 2022):

2012 | Software development began after finding a development team through an Appsplit campaign. (http://www.appsplit.com/campaigns/video-reviews)
2012 | First Vevue video request answered in New York City. (https://www.youtube.com/watch?v=i5gKAK5GzGk)
2017 | Qtum blockchain foundation in Shanghai selects Vevue for a 10-month incubation class and the iOS app is launched.
2018 | Map Running 1.0 is launched, enabling anyone, anywhere to use Vevue to earn income by answering Vevue video requests. (https://twitter.com/decent _i/status/1052713128696537088)
2022 | Vevue launches its NFT ecosystem, beginning with the sale of the Codeeer NFT. (https://www.portal.video/codeeer)
Envisioning the Future: New features envisioned will include videos becoming NFTs and Map Running 2.0 (https://www.portal.video/), which will earn users NFT badges for answering video requests. These novelty NFT badges, or NVLs (Fig. 4), will be divided into five categories:

1. NVL 360 | 360 degree video of a location. Turn slowly, 30 second video.
2. NVL Beauty | Film something you find beautiful at the location.
3. NVL Tour | Review the location by giving us a tour or vocal description.
4. NVL Active | Film yourself or you and others doing an activity at the location.
5. NVL Clean | Fill a bucket or bag with garbage. Showcase your cleanup with video.

Sharing in our destination: As a map librarian, I often observe the ways in which visitors relate our physical map collection to their own personal experiences or knowledge, augmenting the concept that everything and everyone is somewhere. Vevue’s long-term vision is to make the world more transparent, and to enable people to learn from, and take care of, each other through video, while utilizing the decentralizing technology of blockchain. It is the digital-visual equivalent of pulling a map out of the drawer and sharing your geolocated experiences or knowledge with others.

References
LEAF. https://www.fremontleaf.org/
Olson, Thomas. Interview with author, 1/24/2022.

Andria Olson, is the map librarian at Branner Earth Sciences Library & Map Collections at Stanford University. Originally from Minnesota, she spent several years in the US Army as a Persian-Farsi language analyst before separating to pursue librarianship. In 2019, Andria created the ArcGIS StoryMap of the Year, Pancakes & Silver, and has since been providing instruction on StoryMaps for her community along with managing Stanford’s contemporary map collections and maps digitization program.
A unique feature is the current exhibition of rooms representing. Each mapmaker’s studios’ distinct personality and interests can be understood through an examination of the special items they kept near them. One of the most interesting studios was Merca-tor’s, filled with his scientific and mathematical books. (Fig. 1) His actual studio and books have not survived, and the collection features contemporary copies. Researchers have been able to reconstruct a list of all the scientific books in Merca-tor’s library, and Jan de Graeve, a Brussels Map Circle member, (Fig. 2) has managed to collect and donate to KRB copies of ‘almost all’ of them. 

The Museum of Manuscripts of the Dukes of Burgundy
The core of the Royal Library’s late medieval holdings is its collection of hundreds of manuscripts, many richly illustrated by the leading artists of their period, commissioned or acquired by the four successive dukes of Burgundy during their reigns: Philip the Bold (1363–1404), John the Fearless (1404–19), Philip the Good (1419–67), and Charles the Bold (1467–77). Of the original 900 manuscripts, only 300 remain. The fate of the 600 missing manuscripts is unknown—they were simply ‘lost’ over time. These exquisite exemplars of fourteenth- and fifteenth-century masterworks of French and Flemish miniature art include books of the hours, stories of the saints and martyrs, bible stories, and others. (Fig. 3, next page) From St. Augustine’s The City of God (1420-1435) 

The Arts and History Museum
One room only was included in our visit to the Arts and History Museum—but what a room it was! It was dedicated to Renaissance scientific instruments, especially those made in the Louvain workshops. There were weight sets, all standardized, tools for measuring, compass measures as designed by Galileo, and various timekeeping systems, including sundials. These can be accurate to the minute when carefully designed, and are adjusted to the local meridian lines for accuracy. There were beautiful representations of the planets and heavenly bodies, with Earth at the center, for at the time they were made, it was still a geocentric world.

We viewed a variety of navigational instruments such as sextants and octants (which use a 45-degree angle), with both meridian lines and equator lines. These could measure
The arc of the Sun and were adaptable to any time of year. The wonderful collection of astrolabes also has the ability to represent spherical elements clearly and accurately on a flat surface. Greatly used during the Renaissance, their invention is attributed to Islamic scholars during the Hellenistic period between 220 and 150 BCE.

An armillary sphere of Gualterus Arsenius, a nephew of mathematician and cosmographer Gemma Frisius, is also on display. The sphere was used to demonstrate and study the motions of the celestial sphere in relation to the Earth. It followed the Ptolemaic model of a geocentric system. The central golden globe represents the Earth, while the rings around the central vertical axis indicate the position of the Tropics of Cancer and Capricorn, the apparent journey of the Sun, the movement of the Moon, and other astronomically important features. (Fig. 4)

The display included a stunning celestial globe by Mercator and a pair of celestial and terrestrial globes created by Coronelli in 1683.

Royal Museum of the Armed Forces and Military History

The Map Room of this museum contains over 20,000 Belgian and foreign maps, blueprints of military buildings, atlases from the sixteenth to the twentieth century, and a collection of 300,000 volumes of military history. The collection includes six special items: (1) a book from 1730–40 detailing the concept of fortifications for battle, and including both methods and theory; (2) a battle map of Mons (Bergen), created in 1755, sixty years after the actual battle, illustrating rivers, canals, trenches, and buildings, based on an earlier map created right after the battle; (3) an illustration of a new fortification system created by Marquis de Vauban, one of the foremost engineers of his time; (Fig. 5) (4) a table-sized map of Napoleon’s French campaign in Russia; (5) a plan of the positions of both the king and the rebels who wanted independence from the Netherlands, with the king’s troops noted in orange, and the rebels in blue. Why blue? The rebels had no formal uniforms, but they tended to wear blue; (6) a French map of the front lines of World War I. The trenches are clearly marked, with Allied in blue and German in red. The collection also includes Belgian, French, British, and German trench maps.

The State Archives of Belgium

The Brussels office of the State Archives has some 20,000 maps, but there are hundreds of thousands in other state archives across Belgium. The government has begun the process of digitizing the collection. There are many series of maps, and the state continues to purchase maps to augment the collection. At some point in the Archive’s history, many maps were separated from the documents to which they had been attached, and work is being done to attempt to re-integrate maps and their documentation.

Of special interest to environmentalists, the entrance to the Archives contains an imposing 1661 painted map of the forested area of Brussels, showing those parts which were then being exploited for timber. Today there would be no areas marked, for this resource has been fully exploited!

Ten special maps were displayed, including a 5-meter-long map of the river Scheldt, created in 1468/69. The distances shown are fairly accurate, amazing for that time period! Buildings, churches, fields, and windmills are shown along the riverbank.

A 1416 map of the Watergate complex in Nieuwpoort, a town along the Belgian coast, was originally created for the citizens of Bruges and nearby towns, whose citizens wanted to see if there could be a way to shorten the time that it took ships to reach them – a kind of short detour. This is the oldest map in the Archives’ collection.
Meet Our Member: Bill Brandenburg
Interviewed by Juliet Rothman

When Bill was a kid, his family enjoyed taking road trips. On these occasions, his father always gave him the map, and he became the family navigator, while his mother and his two sisters simply—enjoyed the passing scenery. In 2001, with his own children "all grown up", Bill found himself getting interested in maps. That same year, he purchased his first map. Realizing that this was an interest he wanted to pursue, he researched, found, and immediately joined the California Map Society. There, he met Leonard Rothman, who introduced him to the Washington Map Society, and he joined that as well. He learned about IMCOS and became a member, attending his first IMCOS Symposium in Guatemala in 2007.

City plans and city views are his favorite maps, along with 16th-century northern European maps. His collection is focused on these, and his favorites among them include a 1772 and an 1852 map of London. He also enjoys collecting maps of Washington DC, New York, and Boston. Bill shares that his wife "got into framing", so that all the walls of their home are covered with maps!

Bill was born in Vallejo, CA, and his family moved to Belmont when he was 5 years old, and he grew up there. After his first year as a student at San Mateo College, he became draft-eligible; he was drafted and served in Hawaii in the Army Military Intelligence Service. He returned to San Mateo College, earning his degree there, and then worked in the Bay Area as a postal clerk and carrier for the United States Post Office for 17 years. He continued for 20 additional years in IT, working for the Post Office for a total of 37 years and retiring in January of 2007.

He then moved to southern California with his second wife, Marcy, to live near her family. Marcy immigrated to the United States from the Philippines in 1975 and began working in IT in the aerospace industry and then with Delta Dental, Gap, Home Savings, and others, and both she and Bill shared an interest in the field of IT. Bill and Marcy met in 2001 and married in 2004. He has two children: a daughter, Sumi, who is a nurse in San Mateo County, and Kenny, who is a San Francisco firefighter at the station near Oracle Giants Field in San Francisco.

Bill and Marcy love to travel, and, indeed, this interview was held in Brussels during the IMCOS symposium! The couple often travels to the Philippines, and Bill says that he loves the Philippines and the Filipino people very much. Marcy and her sister own a condo in Manila together, and they also have a brother nearby. They especially enjoy the holiday of Ati Atihan, a celebration held on the 3rd Sunday in January, and try to be in the Philippines to join in the fun!

Both he and Marcy are very involved in Project Pearls, a non-profit which is dedicated to working with kids in the slums of Manila. The Project offers food, scholarships, and other assistance. The government of the Philippines moved some of the kids out of Manila in order to use the slum area land for other purposes and set up a new place for them in Bulacan province. There, Project Pearls has set up a Learning Center and also works with girls to enhance their self-esteem. The Project has recently begun to expand its Manila commitments and is now beginning to work with street people to provide clothing, food, and medical care. Bill has served on the Board for many years, and both he and Marcy continue to be very involved.

Bill is enjoying being a part of the California Map Society. He enjoys the meetings, the speakers, the local groups, and getting to know members who share his interests in maps and mapping.
The California Map Society (CMS) is a founding friend of the David Rumsey Map Center and as partners we sponsor an annual award for outstanding student scholarship. This year we are offering an opportunity for a student to curate an exhibition at the David Rumsey Map Center which draws from our map collections and focuses on the topic of the applicant’s choice.

This inaugural student-curated exhibition competition is open to all undergraduate and graduate students currently enrolled in an undergraduate or graduate degree seeking program in California. Students will work closely with Rumsey Map Center staff to realize their ideas and are not required to have prior curatorial experience. Students from traditionally underrepresented groups in academia are strongly encouraged to apply.

CLICK HERE FOR MORE INFO OR SCAN THE CODE
Ronald Gustafson passed away peacefully in 2021 at the age of 78. He will be missed by all who knew him as an industry leader, mentor, and supporter of education and music training. Ron held many interests, including collecting rare maps and history books of the western United States, and he was a life member of the California Map Society. He enjoyed drag racing, was a railroad history buff, and a member of the Westerners’ Los Angeles Corral.

Ron was President and Chairman of the Board of the Coast Packing Company, a family-owned business that processed edible fats and oils. He had started with the company in 1955, as a boy, packaging bacon for supermarkets at a salary of $1.00 per day. On his way up the company ladder, he received a B.A. in Industrial Technology from California State University, Los Angeles, a teaching credential from the state of California, and an MBA from Pepperdine University. He was drafted and served in the Army for two years, working with intelligence communications.

Ron held a lifelong commitment toward helping others to advance their educations. He was a Career Advantage Mentor (CAP) for the USC Marshall School of Business for over 18 years. He held a founding and leadership role for over twenty years in the scholarship foundation for the meatpacking/animal science industry, ultimately serving as Emeritus Director. The North American Meat Institute (NAMI) endowed the scholarship fund and named it in his honor. He also served as treasurer of the Neighborhood Music School in Boyle Heights, CA, and received a Business Leader Award from them.

Ron loved sharing his knowledge with others and lived a life of service to the meatpacking industry, his community, his country, and his family. He leaves behind his wife Nadya, two children, six grandchildren, and his extended family.

Photo image from:
Karl Barnum
Lara Barnum
Randel Brown
Daniel Crouch
Cinthia Eichhorn
Thomas Euper
Claudia Funke
Gregory Gajda
Alek Gasiel
Peter Gourewitch
Benjamin Grant
Jineui Hong
Jeffrey Hunt
Jeffrey Katz
Joseph Kolko
Cooper Logan
Eric Lowe
Howard McLeod
Gordon Means
David Murrell
Susana Oliveros
Amy Rock
William Sawyers
Jim Schein
Susan Schulten
Holli Teltoe
Jane Tillis
Timothy Weiskel
John Wolf
Emily Yang
Julie Yeh
Alex Zukas
Marguerite Wilbur

Calafia, the name of our Society’s Journal, was a fictional warrior queen who ruled over a kingdom of Black women living on the mythical Island of California.

CMS Officers 2021-22
President, Ronald Gibbs, MD
president@californiamapsociety.org
VP for Northern California, Thomas Paper
tom@websterpacific.com
VP for Southern California, Courtney Spikes
cspikes@me.com
Treasurer, John Fleming
treasurer@californiamapsociety.org
Secretary, Kenneth Habeeb
secretary@californiamapsociety.org
VP for Membership, Fred DeJarlais
fred.dejarlais@gmail.com
VP for Publications, Juliet Rothman
rothman@berkeley.edu
VP for Information Technology, David Kalifon
david@californiamapsociety.org
Immediate Past President, Jon Jablonski
pastpres@californiamapsociety.org

Past Presidents
Norman J.W. Thrower 1979-1980
Gerald Greenberg 1980-1985
Vincent Mazzucchelli 1986-1989
Cherie Northon 1990-1992
Alfred W. Newman 1993-1996
William Warren 1997-2000
Glen McLaughlin 2001-2003
David Kalifon 2003-2005
Susan Caughey 2007-2009
Philip R. Simon 2009-2011
Fred DeJarlais 2011-2013
Len Rothman 2013-2015
John Fleming 2015-2017
Susan Caughey 2017-2019
Jon Jablonski 2019-2021

Calafia The Journal of the California Map Society
Juliet Rothman, Editor
Fred DeJarlais, Publisher
Submissions should be directed to Juliet Rothman: rothman@berkeley.edu

President, Ronald Gibbs, MD
president@californiamapsociety.org
VP for Northern California, Thomas Paper
tom@websterpacific.com
VP for Southern California, Courtney Spikes
cspikes@me.com
Treasurer, John Fleming
treasurer@californiamapsociety.org
Secretary, Kenneth Habeeb
secretary@californiamapsociety.org
VP for Membership, Fred DeJarlais
fred.dejarlais@gmail.com
VP for Publications, Juliet Rothman
rothman@berkeley.edu
VP for Information Technology, David Kalifon
david@californiamapsociety.org
Immediate Past President, Jon Jablonski
pastpres@californiamapsociety.org

Past Presidents
Norman J.W. Thrower 1979-1980
Gerald Greenberg 1980-1985
Vincent Mazzucchelli 1986-1989
Cherie Northon 1990-1992
Alfred W. Newman 1993-1996
William Warren 1997-2000
Glen McLaughlin 2001-2003
David Kalifon 2003-2005
Susan Caughey 2007-2009
Philip R. Simon 2009-2011
Fred DeJarlais 2011-2013
Len Rothman 2013-2015
John Fleming 2015-2017
Susan Caughey 2017-2019
Jon Jablonski 2019-2021

New members 2021-22
Howard McLeod
Gordon Means
David Murrell
Susana Oliveros
Amy Rock
William Sawyers
Jim Schein
Susan Schulten
Holli Teltoe
Jane Tillis
Timothy Weiskel
John Wolf
Emily Yang
Julie Yeh
Alex Zukas
Marguerite Wilbur

Our advertisers
ii. Old World Auctions
iii. PBA Galleries
25. Original Antique Maps
25. Washington Map Society
40. New World Maps
50. The Digital Gallery
57. Neatline Maps

Advertising in Calafia

No. of Issues 2 1
Pricing per Issue
Full page, verso of cover $450/$250
Full page, back cover $450/$250
Full page $400/$225
Half page $300/$175
Quarter page $200/$125

Size
Full page 10”H x 7.5”W
Half page 4.75”H x 7.5”W
Quarter page 4.75”H x 3.625”W

Format
JPEG or PDF, 300-400 DPI
Remissions, payable to California Map Society, should be mailed to John Fleming, CMS Treasurer, PO Box 55B, Newport Beach, CA 92662
Email ad copy to Fred DeJarlais, Publisher, fred.dejarlais@gmail.com